These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7721690)

  • 21. Impact of the Mg(2+)-citrate transporter CitM on heavy metal toxicity in Bacillus subtilis.
    Krom BP; Huttinga H; Warner JB; Lolkema JS
    Arch Microbiol; 2002 Nov; 178(5):370-5. PubMed ID: 12375105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium.
    Hazama K; Nagata S; Fujimori T; Yanagisawa S; Yoneyama T
    Physiol Plant; 2015 Jun; 154(2):243-55. PubMed ID: 25403762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cd, Cu, Pb, and Zn coprecipitates in Fe oxide formed at different pH: aging effects on metal solubility and extractability by citrate.
    Martínez CE; McBride MB
    Environ Toxicol Chem; 2001 Jan; 20(1):122-6. PubMed ID: 11351398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry.
    Rellán-Alvarez R; Abadía J; Alvarez-Fernández A
    Rapid Commun Mass Spectrom; 2008 May; 22(10):1553-62. PubMed ID: 18421700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photodegradation of a ternary iron(III)-uranium(VI)-citric acid complex.
    Dodge CJ; Francis AJ
    Environ Sci Technol; 2002 May; 36(9):2094-100. PubMed ID: 12026999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular response to a multiple-metal stress in Pseudomonas fluorescens.
    Appanna VD; St Pierre M
    J Biotechnol; 1996 Jul; 48(1-2):129-36. PubMed ID: 8818279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens ATCC 13525 is mediated by the phosphate content of the growth medium.
    al-Aoukaty A; Appanna VD; Huang J
    FEMS Microbiol Lett; 1991 Oct; 67(3):283-90. PubMed ID: 1769535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Secondary transport of metal-citrate complexes: the CitMHS family.
    Lensbouer JJ; Doyle RP
    Crit Rev Biochem Mol Biol; 2010 Oct; 45(5):453-62. PubMed ID: 20735204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal speciation in sediment and bioaccumulation in Meretrix lyrata in the Tien Estuary in Vietnam.
    Van Hop N; Thi Quynh Dieu H; Hai Phong N
    Environ Monit Assess; 2017 Jun; 189(6):299. PubMed ID: 28553695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterization and metal ion specificity of the metal-citrate complex transporter from Streptomyces coelicolor.
    Lensbouer JJ; Patel A; Sirianni JP; Doyle RP
    J Bacteriol; 2008 Aug; 190(16):5616-23. PubMed ID: 18556792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas putida.
    McLean JE; Pabst MW; Miller CD; Dimkpa CO; Anderson AJ
    Chemosphere; 2013 Apr; 91(3):374-82. PubMed ID: 23270705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-protein interactions in transport, accumulation, and excretion of metals.
    Sarkar B
    Biol Trace Elem Res; 1989; 21():137-44. PubMed ID: 2484580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subcellular metal partitioning in larvae of the insect Chaoborus collected along an environmental metal exposure gradient (Cd, Cu, Ni and Zn).
    Rosabal M; Hare L; Campbell PG
    Aquat Toxicol; 2012 Sep; 120-121():67-78. PubMed ID: 22647479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals.
    Giovanella P; Cabral L; Costa AP; de Oliveira Camargo FA; Gianello C; Bento FM
    Ecotoxicol Environ Saf; 2017 Jun; 140():162-169. PubMed ID: 28259060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical modeling of precipitation and dissolution reactions in microbiological systems.
    Rittmann BE; Banaszak JE; VanBriesen JM; Reed DT
    Biodegradation; 2002; 13(4):239-50. PubMed ID: 12521288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids.
    Yang H; Wong JW; Yang ZM; Zhou LX
    J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological metal uptake by Nostoc punctiforme.
    Hudek L; Rai S; Michalczyk A; Rai LC; Neilan BA; Ackland ML
    Biometals; 2012 Oct; 25(5):893-903. PubMed ID: 22592442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure.
    Alomary AA; Belhadj S
    Environ Monit Assess; 2007 Dec; 135(1-3):265-80. PubMed ID: 17342430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.