These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7721716)

  • 1. Potassium/proton antiport system of growing Enterococcus hirae at high pH.
    Kakinuma Y; Igarashi K
    J Bacteriol; 1995 Apr; 177(8):2227-9. PubMed ID: 7721716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium/proton antiport system is dispensable for growth of Enterococcus hirae at low pH.
    Kakinuma Y; Yasumura K; Igarashi K
    Biosci Biotechnol Biochem; 1999 May; 63(5):875-8. PubMed ID: 10380629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and properties of Enterococcus hirae mutants defective in the potassium/proton antiport system.
    Kakinuma Y; Igarashi K
    J Bacteriol; 1999 Jul; 181(13):4103-5. PubMed ID: 10383981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active potassium extrusion regulated by intracellular pH in Streptococcus faecalis.
    Kakinuma Y; Igarashi K
    J Biol Chem; 1988 Oct; 263(28):14166-70. PubMed ID: 2459118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ntpJ gene in the Enterococcus hirae ntp operon encodes a component of KtrII potassium transport system functionally independent of vacuolar Na+-ATPase.
    Murata T; Takase K; Yamato I; Igarashi K; Kakinuma Y
    J Biol Chem; 1996 Apr; 271(17):10042-7. PubMed ID: 8626559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium ATPase and sodium/proton antiporter are not obligatory for sodium homeostasis of Enterococcus hirae at acid pH.
    Ikegami M; Takahashi H; Igarashi K; Kakinuma Y
    Biosci Biotechnol Biochem; 2000 May; 64(5):1088-92. PubMed ID: 10879490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Transport of protons and potassium ions across the membranes of bacteria Enterococcus hirae depends on ATP and nicotineamide adenine dinucleotides].
    Poladian A; Trchunian A
    Biofizika; 2011; 56(4):684-7. PubMed ID: 21950071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Growth and proton-potassium exchange in Enterococcus hirae: protonophore effect and the role of oxidation-reduction potential].
    Poladian A; Kirakosian G; Trchunian A
    Biofizika; 2006; 51(3):499-503. PubMed ID: 16808350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A; Ohanjayan E; Zakharyan E
    Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of manganese (II) but not nickel (II) ions on Enterococcus hirae cell growth, redox potential decrease, and proton-coupled membrane transport.
    Vardanyan Z; Trchounian A
    Cell Biochem Biophys; 2013; 67(3):1301-6. PubMed ID: 23712873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of K+ and Na+ in pH homeostasis and growth of the marine bacterium Vibrio alginolyticus.
    Nakamura T; Kawasaki S; Unemoto T
    J Gen Microbiol; 1992 Jun; 138(6):1271-6. PubMed ID: 1326594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation movements at alkaline pH in bacteria growing without respiration.
    Kobayashi H; Saito H; Futatsugi L; Kakegawa T
    Novartis Found Symp; 1999; 221():235-42; discussion 242-5. PubMed ID: 10207923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in ion transport through membranes, ATPase activity and antibiotics effects in Enterococcus hirae after low intensity electromagnetic irradiation of 51,8 and 53,0 GHz frequencies].
    Torgomian É; Oganian V; Blbulian C; Trchunian A
    Biofizika; 2013; 58(4):674-80. PubMed ID: 24455887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Enterococcus hirae mutant deficient in low-affinity potassium uptake at alkaline pH.
    Kawano M; Igarashi K; Kakinuma Y
    Biosci Biotechnol Biochem; 2002 Jul; 66(7):1597-600. PubMed ID: 12224651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium uptake with low affinity and high rate in Enterococcus hirae at alkaline pH.
    Kawano M; Abuki R; Igarashi K; Kakinuma Y
    Arch Microbiol; 2001 Jan; 175(1):41-5. PubMed ID: 11271419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of cell pH by K+/H+ antiport in renal epithelial cells.
    Graber M; Pastoriza-Munoz E
    Am J Physiol; 1993 Dec; 265(6 Pt 2):F773-83. PubMed ID: 8285210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K+/H+ antiporter in alkaliphilic Bacillus sp. no. 66 (JCM 9763).
    Kitada M; Morotomi S; Horikoshi K; Kudo T
    Extremophiles; 1997 Aug; 1(3):135-41. PubMed ID: 9680319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Potassium transport in yeast].
    López R; Peña A
    Rev Latinoam Microbiol; 1999; 41(2):91-103. PubMed ID: 10970213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrusion of sodium and hydrogen ions as the primary process in potassium ion accumulation by Streptococcus faecalis.
    Harold FM; Baarda JR; Pavlasova E
    J Bacteriol; 1970 Jan; 101(1):152-9. PubMed ID: 4983644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response mechanisms of lactic acid bacteria to alkaline environments: a review.
    Nyanga-Koumou AP; Ouoba LI; Kobawila SC; Louembe D
    Crit Rev Microbiol; 2012 Aug; 38(3):185-90. PubMed ID: 22168378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.