BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 7721722)

  • 21. A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria.
    Maréchal A; Xu JY; Genko N; Hartley AM; Haraux F; Meunier B; Rich PR
    Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9349-9355. PubMed ID: 32291342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox-linked proton translocation in cytochrome oxidase: the importance of gating electron flow. The effects of slip in a model transducer.
    Blair DF; Gelles J; Chan SI
    Biophys J; 1986 Oct; 50(4):713-33. PubMed ID: 3022836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: Coulomb pump model with kinetic gating.
    Popović DM; Stuchebrukhov AA
    FEBS Lett; 2004 May; 566(1-3):126-30. PubMed ID: 15147881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase.
    Belevich I; Verkhovsky MI; Wikström M
    Nature; 2006 Apr; 440(7085):829-32. PubMed ID: 16598262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heme-copper oxidases with modified D- and K-pathways are yet efficient proton pumps.
    Gomes CM; Backgren C; Teixeira M; Puustinen A; Verkhovskaya ML; Wikström M; Verkhovsky MI
    FEBS Lett; 2001 May; 497(2-3):159-64. PubMed ID: 11377432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupled proton and electron transfer reactions in cytochrome oxidase.
    Gennis RB
    Front Biosci; 2004 Jan; 9():581-91. PubMed ID: 14766393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain.
    Sun F; Zhou Q; Pang X; Xu Y; Rao Z
    Curr Opin Struct Biol; 2013 Aug; 23(4):526-38. PubMed ID: 23867107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton exit from the heme-copper oxidase of Escherichia coli.
    Puustinen A; Wikström M
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):35-7. PubMed ID: 9874767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the proton pump mechanism of cytochrome c oxidase in real time.
    Belevich I; Bloch DA; Belevich N; Wikström M; Verkhovsky MI
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2685-90. PubMed ID: 17293458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton pumping by cytochrome c oxidase - A 40 year anniversary.
    Wikström M; Sharma V
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):692-698. PubMed ID: 29567353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The fifth electron in the fully reduced caa(3) from Thermus thermophilus is competent in proton pumping.
    Siletsky SA; Belevich I; Soulimane T; Verkhovsky MI; Wikström M
    Biochim Biophys Acta; 2013 Jan; 1827(1):1-9. PubMed ID: 23025918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redesign of the proton-pumping machinery of cytochrome c oxidase: proton pumping does not require Glu(I-286).
    Aagaard A; Gilderson G; Mills DA; Ferguson-Miller S; Brzezinski P
    Biochemistry; 2000 Dec; 39(51):15847-50. PubMed ID: 11123910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward a chemical mechanism of proton pumping by the B-type cytochrome c oxidases: application of density functional theory to cytochrome ba3 of Thermus thermophilus.
    Fee JA; Case DA; Noodleman L
    J Am Chem Soc; 2008 Nov; 130(45):15002-21. PubMed ID: 18928258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A.
    Rauhamäki V; Wikström M
    Biochim Biophys Acta; 2014 Jul; 1837(7):999-1003. PubMed ID: 24583065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition.
    Pannala VR; Camara AK; Dash RK
    J Appl Physiol (1985); 2016 Nov; 121(5):1196-1207. PubMed ID: 27633738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton pumping in cytochrome c oxidase: energetic requirements and the role of two proton channels.
    Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2014 Jul; 1837(7):1165-77. PubMed ID: 24418352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A possible role of slips in cytochrome C oxidase in the antioxygen defense system of the cell.
    Papa S; Guerrieri F; Capitanio N
    Biosci Rep; 1997 Feb; 17(1):23-31. PubMed ID: 9171918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.