These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 7721722)

  • 81. H+/e- stoichiometry of mitochondrial cytochrome complexes reconstituted in liposomes. Rate-dependent changes of the stoichiometry in the cytochrome c oxidase vesicles.
    Capitanio N; Capitanio G; De Nitto E; Villani G; Papa S
    FEBS Lett; 1991 Aug; 288(1-2):179-82. PubMed ID: 1652471
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Protonmotive cytochrome system of mitochondria.
    Mitchell P
    Ann N Y Acad Sci; 1980; 341():564-84. PubMed ID: 6249160
    [No Abstract]   [Full Text] [Related]  

  • 83. Structures and proton-pumping strategies of mitochondrial respiratory enzymes.
    Schultz BE; Chan SI
    Annu Rev Biophys Biomol Struct; 2001; 30():23-65. PubMed ID: 11340051
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Redox-linked protolytic reactions in soluble cytochrome-c oxidase from beef-heart mitochondria: redox Bohr effects.
    Capitanio N; Vygodina TV; Capitanio G; Konstantinov AA; Nicholls P; Papa S
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):255-65. PubMed ID: 9030268
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes.
    Papa S; Capitanio G; Papa F
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):322-349. PubMed ID: 28639360
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase.
    Brändén G; Pawate AS; Gennis RB; Brzezinski P
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):317-22. PubMed ID: 16407159
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveal modulation of the properties of heme a.
    Lee HM; Das TK; Rousseau DL; Mills D; Ferguson-Miller S; Gennis RB
    Biochemistry; 2000 Mar; 39(11):2989-96. PubMed ID: 10715119
    [TBL] [Abstract][Full Text] [Related]  

  • 88. In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway.
    Guerrero-Castillo S; Vázquez-Acevedo M; González-Halphen D; Uribe-Carvajal S
    Biochim Biophys Acta; 2009 Feb; 1787(2):75-85. PubMed ID: 19038229
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential.
    Björck ML; Brzezinski P
    Nat Commun; 2018 Aug; 9(1):3187. PubMed ID: 30093670
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Biological proton pumping in an oscillating electric field.
    Kim YC; Furchtgott LA; Hummer G
    Phys Rev Lett; 2009 Dec; 103(26):268102. PubMed ID: 20366348
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The allosteric protein interactions in the proton-motive function of mammalian redox enzymes of the respiratory chain.
    Capitanio G; Papa F; Papa S
    Biochimie; 2021 Oct; 189():1-12. PubMed ID: 34097987
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Thermodynamic efficiency, reversibility, and degree of coupling in energy conservation by the mitochondrial respiratory chain.
    Wikström M; Springett R
    Commun Biol; 2020 Aug; 3(1):451. PubMed ID: 32811895
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The membrane subunit NuoL(ND5) is involved in the indirect proton pumping mechanism of Escherichia coli complex I.
    Nakamaru-Ogiso E; Kao MC; Chen H; Sinha SC; Yagi T; Ohnishi T
    J Biol Chem; 2010 Dec; 285(50):39070-8. PubMed ID: 20826797
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The accelerated evolution of human cytochrome c oxidase - Selection for reduced rate and proton pumping efficiency?
    Rottenberg H
    Biochim Biophys Acta Bioenerg; 2022 Nov; 1863(8):148595. PubMed ID: 35850262
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Explaining leak states in the proton pump of heme-copper oxidases observed in single-molecule experiments.
    Palese LL
    Biophys Chem; 2020 Jan; 256():106276. PubMed ID: 31731070
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Adaptation of aerobic respiration to low O2 environments.
    Han H; Hemp J; Pace LA; Ouyang H; Ganesan K; Roh JH; Daldal F; Blanke SR; Gennis RB
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14109-14. PubMed ID: 21844375
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Restoration of electron transport without proton pumping in mammalian mitochondria.
    Perales-Clemente E; Bayona-Bafaluy MP; Pérez-Martos A; Barrientos A; Fernández-Silva P; Enriquez JA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18735-9. PubMed ID: 19020091
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.
    Chang I; Heiske M; Letellier T; Wallace D; Baldi P
    PLoS One; 2011; 6(9):e14820. PubMed ID: 21931590
    [TBL] [Abstract][Full Text] [Related]  

  • 99. On the mechanism of proton translocation by respiratory enzyme.
    Wikström M; Morgan JE; Verkhovsky MI
    J Bioenerg Biomembr; 1998 Feb; 30(1):139-45. PubMed ID: 9623815
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Variations of activities in the segments of respiratory chain among tissues in a patient with mitochondrial encephalomyopathy.
    Furutani A; Gotoh S; Tokonami F; Ohnishi A; Higashi K
    J UOEH; 1988 Mar; 10(1):1-9. PubMed ID: 2835804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.