These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7721859)

  • 1. Genetic engineering of snake toxins. The functional site of Erabutoxin a, as delineated by site-directed mutagenesis, includes variant residues.
    Trémeau O; Lemaire C; Drevet P; Pinkasfeld S; Ducancel F; Boulain JC; Ménez A
    J Biol Chem; 1995 Apr; 270(16):9362-9. PubMed ID: 7721859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering of snake toxins. Role of invariant residues in the structural and functional properties of a curaremimetic toxin, as probed by site-directed mutagenesis.
    Pillet L; Trémeau O; Ducancel F; Drevet P; Zinn-Justin S; Pinkasfeld S; Boulain JC; Ménez A
    J Biol Chem; 1993 Jan; 268(2):909-16. PubMed ID: 8419369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a locality in snake venom alpha-neurotoxins with a significant compositional similarity to marine snail alpha-conotoxins: implications for evolution and structure/activity.
    Dufton MJ; Bladon P; Harvey AL
    J Mol Evol; 1989 Oct; 29(4):355-66. PubMed ID: 2514275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role and environment of the conserved Lys27 of snake curaremimetic toxins as probed by chemical modifications, site-directed mutagenesis and photolabelling experiments.
    Hervé M; Pillet L; Humbert P; Trémeau O; Ducancel F; Hirth C; Ménez A
    Eur J Biochem; 1992 Aug; 208(1):125-31. PubMed ID: 1511681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability among the sites by which curaremimetic toxins bind to torpedo acetylcholine receptor, as revealed by identification of the functional residues of alpha-cobratoxin.
    Antil S; Servent D; Ménez A
    J Biol Chem; 1999 Dec; 274(49):34851-8. PubMed ID: 10574958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor.
    Barchan D; Kachalsky S; Neumann D; Vogel Z; Ovadia M; Kochva E; Fuchs S
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7717-21. PubMed ID: 1380164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the snake short-chain neurotoxin, erabutoxin c, precursor gene.
    Fuse N; Tsuchiya T; Nonomura Y; Menez A; Tamiya T
    Eur J Biochem; 1990 Nov; 193(3):629-33. PubMed ID: 2249684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain alpha-neurotoxins and alpha-conotoxins.
    Mordvintsev DY; Polyak YL; Levtsova OV; Tourleigh YV; Kasheverov IE; Shaitan KV; Utkin YN; Tsetlin VI
    Comput Biol Chem; 2005 Dec; 29(6):398-411. PubMed ID: 16290328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two subsites in the binding domain of the acetylcholine receptor: an aromatic subsite and a proline subsite.
    Kachalsky SG; Jensen BS; Barchan D; Fuchs S
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10801-5. PubMed ID: 7479887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two novel alpha-neurotoxins isolated from the taipan snake, Oxyuranus scutellatus, exhibit reduced affinity for nicotinic acetylcholine receptors in brain and skeletal muscle.
    Zamudio F; Wolf KM; Martin BM; Possani LD; Chiappinelli VA
    Biochemistry; 1996 Jun; 35(24):7910-6. PubMed ID: 8672493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alpha-bungarotoxin-binding sequence on the Torpedo nicotinic acetylcholine receptor alpha-subunit: conservative amino acid substitutions reveal side-chain specific interactions.
    McLane KE; Wu X; Conti-Tronconi BM
    Biochemistry; 1994 Mar; 33(9):2576-85. PubMed ID: 8117719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal alpha 7-nicotinic acetylcholine receptor.
    Antil-Delbeke S; Gaillard C; Tamiya T; Corringer PJ; Changeux JP; Servent D; Ménez A
    J Biol Chem; 2000 Sep; 275(38):29594-601. PubMed ID: 10852927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertion of a disulfide-containing neurotoxin into E. coli alkaline phosphatase: the hybrid retains both biological activities.
    Gillet D; Ducancel F; Pradel E; Léonetti M; Ménez A; Boulain JC
    Protein Eng; 1992 Apr; 5(3):273-8. PubMed ID: 1409549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of a non-enzymatic toxin into a toxoid by genetic engineering.
    Fromen-Romano C; Maillère B; Drevet P; Lajeunesse E; Ducancel F; Boulain JC; Ménez A
    Protein Eng; 1997 Oct; 10(10):1213-20. PubMed ID: 9488146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mutations of Torpedo acetylcholine receptor alpha 1 subunit residues 184-200 on alpha-bungarotoxin binding in a recombinant fusion protein.
    Chaturvedi V; Donnelly-Roberts DL; Lentz TL
    Biochemistry; 1993 Sep; 32(37):9570-6. PubMed ID: 8373764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of protein epitopes: a single deletion in a snake toxin generates full binding capacity to a previously unrecognized antibody.
    Zinn-Justin S; Pillet L; Ducancel F; Thomas A; Smith JC; Boulain JC; Ménez A
    Protein Eng; 1994 Jul; 7(7):917-23. PubMed ID: 7526378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution x-ray analysis of two mutants of a curaremimetic snake toxin.
    Gaucher JF; Ménez R; Arnoux B; Pusset J; Ducruix A
    Eur J Biochem; 2000 Mar; 267(5):1323-9. PubMed ID: 10691969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit.
    Neumann D; Barchan D; Horowitz M; Kochva E; Fuchs S
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):7255-9. PubMed ID: 2780569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants.
    Chiara DC; Xie Y; Cohen JB
    Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cobra ( Naja spp. ) nicotinic acetylcholine receptor exhibits resistance to Erabu sea snake ( Laticauda semifasciata) short-chain alpha-neurotoxin.
    Takacs Z; Wilhelmsen KC; Sorota S
    J Mol Evol; 2004 May; 58(5):516-26. PubMed ID: 15170255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.