These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 7721895)
61. Concomitant inhibition of Janus kinase 3 and calcineurin-dependent signaling pathways synergistically prolongs the survival of rat heart allografts. Behbod F; Erwin-Cohen RA; Wang ME; Trawick BW; Qu X; Verani R; Kahan BD; Stepkowski SM; Kirken RA J Immunol; 2001 Mar; 166(6):3724-32. PubMed ID: 11238613 [TBL] [Abstract][Full Text] [Related]
62. CD40-mediated regulation of interleukin-4 signaling pathways in B lymphocytes. Siepmann K; Wohlleben G; Gray D Eur J Immunol; 1996 Jul; 26(7):1544-52. PubMed ID: 8766559 [TBL] [Abstract][Full Text] [Related]
63. Signaling via IL-2 and IL-4 in JAK3-deficient severe combined immunodeficiency lymphocytes: JAK3-dependent and independent pathways. Oakes SA; Candotti F; Johnston JA; Chen YQ; Ryan JJ; Taylor N; Liu X; Hennighausen L; Notarangelo LD; Paul WE; Blaese RM; O'Shea JJ Immunity; 1996 Dec; 5(6):605-15. PubMed ID: 8986719 [TBL] [Abstract][Full Text] [Related]
64. Homodimerization of interleukin-4 receptor alpha chain can induce intracellular signaling. Kammer W; Lischke A; Moriggl R; Groner B; Ziemiecki A; Gurniak CB; Berg LJ; Friedrich K J Biol Chem; 1996 Sep; 271(39):23634-7. PubMed ID: 8798580 [TBL] [Abstract][Full Text] [Related]
65. Critical role of the interleukin 2 (IL-2) receptor gamma-chain-associated Jak3 in the IL-2-induced c-fos and c-myc, but not bcl-2, gene induction. Kawahara A; Minami Y; Miyazaki T; Ihle JN; Taniguchi T Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8724-8. PubMed ID: 7568005 [TBL] [Abstract][Full Text] [Related]
66. A 70-kDa protein facilitates interleukin-4 signal transduction in the absence of the common gamma receptor chain. Dawson CH; Brown BL; Dobson PR Biochem Biophys Res Commun; 1997 Apr; 233(1):279-82. PubMed ID: 9144438 [TBL] [Abstract][Full Text] [Related]
67. Characterization of the cytoplasmic domain of interleukin-13 receptor-alpha. Orchansky PL; Kwan R; Lee F; Schrader JW J Biol Chem; 1999 Jul; 274(30):20818-25. PubMed ID: 10409622 [TBL] [Abstract][Full Text] [Related]
68. Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. Cacalano NA; Migone TS; Bazan F; Hanson EP; Chen M; Candotti F; O'Shea JJ; Johnston JA EMBO J; 1999 Mar; 18(6):1549-58. PubMed ID: 10075926 [TBL] [Abstract][Full Text] [Related]
69. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. Carlesso N; Frank DA; Griffin JD J Exp Med; 1996 Mar; 183(3):811-20. PubMed ID: 8642285 [TBL] [Abstract][Full Text] [Related]
70. Identification of a variable region within the cytoplasmic tail of the IL-2 receptor beta chain that is required for growth signal transduction. Liu KD; Lai SY; Goldsmith MA; Greene WC J Biol Chem; 1995 Sep; 270(38):22176-81. PubMed ID: 7545674 [TBL] [Abstract][Full Text] [Related]
71. Interleukin-7 signaling in human B cell precursor acute lymphoblastic leukemia cells and murine BAF3 cells involves activation of STAT1 and STAT5 mediated via the interleukin-7 receptor alpha chain. van der Plas DC; Smiers F; Pouwels K; Hoefsloot LH; Löwenberg B; Touw IP Leukemia; 1996 Aug; 10(8):1317-25. PubMed ID: 8709637 [TBL] [Abstract][Full Text] [Related]
72. Mechanism of Janus kinase 3-catalyzed phosphorylation of a Janus kinase 1 activation loop peptide. Wang R; Griffin PR; Small EC; Thompson JE Arch Biochem Biophys; 2003 Feb; 410(1):7-15. PubMed ID: 12559972 [TBL] [Abstract][Full Text] [Related]
73. Characterization of critical residues in the cytoplasmic domain of the human interleukin-5 receptor alpha chain required for growth signal transduction. Cornelis S; Fache I; Van der Heyden J; Guisez Y; Tavernier J; Devos R; Fiers W; Plaetinck G Eur J Immunol; 1995 Jul; 25(7):1857-64. PubMed ID: 7542592 [TBL] [Abstract][Full Text] [Related]
74. Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Thompson JE; Cubbon RM; Cummings RT; Wicker LS; Frankshun R; Cunningham BR; Cameron PM; Meinke PT; Liverton N; Weng Y; DeMartino JA Bioorg Med Chem Lett; 2002 Apr; 12(8):1219-23. PubMed ID: 11934592 [TBL] [Abstract][Full Text] [Related]
75. IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton's tyrosine and Janus 2 kinases. Sato S; Katagiri T; Takaki S; Kikuchi Y; Hitoshi Y; Yonehara S; Tsukada S; Kitamura D; Watanabe T; Witte O; Takatsu K J Exp Med; 1994 Dec; 180(6):2101-11. PubMed ID: 7525847 [TBL] [Abstract][Full Text] [Related]
76. JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation: cross-talk with IGF1 receptor. Staerk J; Kallin A; Demoulin JB; Vainchenker W; Constantinescu SN J Biol Chem; 2005 Dec; 280(51):41893-9. PubMed ID: 16239216 [TBL] [Abstract][Full Text] [Related]
77. Functional cooperation of the interleukin-2 receptor beta chain and Jak1 in phosphatidylinositol 3-kinase recruitment and phosphorylation. Migone TS; Rodig S; Cacalano NA; Berg M; Schreiber RD; Leonard WJ Mol Cell Biol; 1998 Nov; 18(11):6416-22. PubMed ID: 9774657 [TBL] [Abstract][Full Text] [Related]
78. The box1 domain of the erythropoietin receptor specifies Janus kinase 2 activation and functions mitogenically within an interleukin 2 beta-receptor chimera. Jiang N; He TC; Miyajima A; Wojchowski DM J Biol Chem; 1996 Jul; 271(28):16472-6. PubMed ID: 8663338 [TBL] [Abstract][Full Text] [Related]
79. JAK3 Janus kinase is involved in interleukin 7 signal pathway. Zeng YX; Takahashi H; Shibata M; Hirokawa K FEBS Lett; 1994 Oct; 353(3):289-93. PubMed ID: 7957877 [TBL] [Abstract][Full Text] [Related]