These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7721980)

  • 21. Characterization of striatal cultures with the effect of QUIN and NMDA.
    Kumar U
    Neurosci Res; 2004 May; 49(1):29-38. PubMed ID: 15099701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional and cellular distribution of serotonin 5-hydroxytryptamine2a receptor mRNA in the nucleus accumbens, olfactory tubercle, and caudate putamen of the rat.
    Mijnster MJ; Raimundo AG; Koskuba K; Klop H; Docter GJ; Groenewegen HJ; Voorn P
    J Comp Neurol; 1997 Dec; 389(1):1-11. PubMed ID: 9390756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential histochemical localization patterns of reduced nicotinamide adenine dinucleotide phosphate-diaphorase and neuronal nitric oxide synthase during postnatal development of the rat vomeronasal organ.
    Nasu F; Haneji T
    Histochem Cell Biol; 2002 Dec; 118(6):473-7. PubMed ID: 12483312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ontogeny of NADPH-diaphorase neurons in serum-free striatal cultures parallels in vivo development.
    Garside S; Woulfe J; Mazurek MF
    Neuroscience; 1997 May; 78(2):615-24. PubMed ID: 9145814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NADPH diaphorase histochemistry in the macaque striate cortex.
    Sandell JH
    J Comp Neurol; 1986 Sep; 251(3):388-97. PubMed ID: 3771835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between nicotinamide adenine dinucleotide phosphate-diaphorase-reactive neurons and blood vessels in basal ganglia.
    Govsa F; Kayalioglu G
    Neuroscience; 1999; 93(4):1335-7. PubMed ID: 10501457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADPH diaphorase-positive neurons in the lizard hippocampus: a distinct subpopulation of GABAergic interneurons.
    Dávila JC; Megías M; Andreu MJ; Real MA; Guirado S
    Hippocampus; 1995; 5(1):60-70. PubMed ID: 7787947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Somatostatin and the patch/matrix compartments of the rat caudate-putamen.
    Rushlow W; Naus CC; Flumerfelt BA
    J Comp Neurol; 1996 Jan; 364(1):184-90. PubMed ID: 8789284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide 19 in the rat superior cervical ganglion.
    Ichikawa H; Terayama R; Yamaai T; Sugimoto T
    Neuroscience; 2009 Jun; 161(1):86-94. PubMed ID: 19303431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased neuropeptide Y mRNA expression in striatum in Parkinson's disease.
    Cannizzaro C; Tel BC; Rose S; Zeng BY; Jenner P
    Brain Res Mol Brain Res; 2003 Feb; 110(2):169-76. PubMed ID: 12591154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of calbindin-D28k, neuronal nitric oxide synthase, and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) in the lateral nucleus of the sheep amygdaloid complex.
    Bombardi C; Grandis A; Chiocchetti R; Lucchi ML
    Anat Embryol (Berl); 2006 Nov; 211(6):707-20. PubMed ID: 17047987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colocalization of somatostatin, neuropeptide Y, neuronal nitric oxide synthase and NADPH-diaphorase in striatal interneurons in rats.
    Figueredo-Cardenas G; Morello M; Sancesario G; Bernardi G; Reiner A
    Brain Res; 1996 Oct; 735(2):317-24. PubMed ID: 8911672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NADPH-diaphorase and cytosolic urea cycle enzymes in the rat spinal cord.
    Nakamura H
    J Comp Neurol; 1997 Sep; 385(4):616-26. PubMed ID: 9302108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NADPH-diaphorase colocalization with somatostatin receptor subtypes sst2A and sst2B in the retina.
    Vasilaki A; Gardette R; Epelbaum J; Thermos K
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1600-9. PubMed ID: 11381067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Behavioral effects of unilateral basal gangliar lesions in neonatal rats.
    Van Hartesveldt C; Lindquist D
    Dev Psychobiol; 1978 Mar; 11(2):151-60. PubMed ID: 640232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Somatostatin is increased in the basal ganglia in Huntington disease.
    Aronin N; Cooper PE; Lorenz LJ; Bird ED; Sagar SM; Leeman SE; Martin JB
    Ann Neurol; 1983 May; 13(5):519-26. PubMed ID: 6191621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional activation of somatostatin and neuropeptide Y containing neurons in experimental models of limbic seizures.
    Vezzani A; Bendotti C; Rizzi M; Monno A; Tarizzo G; Samanin R
    Epilepsy Res Suppl; 1996; 12():187-95. PubMed ID: 9302517
    [No Abstract]   [Full Text] [Related]  

  • 38. Ontogeny of excitotoxic injury to nicotinamide adenine dinucleotide phosphate diaphorase reactive neurons in the neonatal rat striatum.
    Ferriero DM; Arcavi LJ; Simon RP
    Neuroscience; 1990; 36(2):417-24. PubMed ID: 2145527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of hypothalamic neurons expressing a neuropeptide receptor, GALR2, using combined in situ hybridization-immunohistochemistry.
    Nichol KA; Depczynski BB; Cunningham AM
    Methods; 1999 Aug; 18(4):481-6. PubMed ID: 10491278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions.
    Echeverry MB; Guimarães FS; Del Bel EA
    Neuroscience; 2004; 125(4):981-93. PubMed ID: 15120858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.