These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7721982)

  • 61. Population coding strategies and involvement of the superior colliculus in the tactile orienting behavior of naked mole-rats.
    Crish SD; Dengler-Crish CM; Comer CM
    Neuroscience; 2006; 139(4):1461-6. PubMed ID: 16603320
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The intraepidermal innervation of the snout skin of the opossum. A light and electron microscope study, with observations on the nature of Merkel's Tastzellen.
    Munger BL
    J Cell Biol; 1965 Jul; 26(1):79-97. PubMed ID: 5859024
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Scanning electron microscopy study of the lingual papillae in the European mole (Talpa europea, L., Talpidae).
    Jackowiak H
    Anat Histol Embryol; 2006 Jun; 35(3):190-5. PubMed ID: 16677215
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain.
    Nishino H; Nishikawa M; Yokohari F; Mizunami M
    J Comp Neurol; 2005 Dec; 493(2):291-308. PubMed ID: 16255033
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior.
    Fry M; Ferguson AV
    Physiol Behav; 2007 Jul; 91(4):413-23. PubMed ID: 17531276
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nerve fibre and sensory end organ density in the epidermis and papillary dermis of the human hand.
    Kelly EJ; Terenghi G; Hazari A; Wiberg M
    Br J Plast Surg; 2005 Sep; 58(6):774-9. PubMed ID: 16086989
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The digging behavior and skin differentiations in Heterocephalus glaber.
    Tucker R
    J Morphol; 1981 Apr; 168(1):51-71. PubMed ID: 7241605
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Contributions of electric fish to the understanding of sensory processing by reafferent systems.
    Caputi AA
    J Physiol Paris; 2004; 98(1-3):81-97. PubMed ID: 15477024
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A comparative ultrastructural investigation of the cephalic sensory organs in Opisthobranchia (Mollusca, Gastropoda).
    Göbbeler K; Klussmann-Kolb A
    Tissue Cell; 2007 Dec; 39(6):399-414. PubMed ID: 17881026
    [TBL] [Abstract][Full Text] [Related]  

  • 70. From stress and strain to spikes: mechanotransduction in spider slit sensilla.
    French AS; Torkkeli PH; Seyfarth EA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Nov; 188(10):739-52. PubMed ID: 12466950
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Behavioral pieces of neuroethological puzzles.
    Catania KC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Sep; 203(9):677-689. PubMed ID: 28260189
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Olfaction: underwater 'sniffing' by semi-aquatic mammals.
    Catania KC
    Nature; 2006 Dec; 444(7122):1024-5. PubMed ID: 17183311
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sensory adaptations in subterranean mammals.
    Burda H; Bruns V; Müller M
    Prog Clin Biol Res; 1990; 335():269-93. PubMed ID: 2408077
    [No Abstract]   [Full Text] [Related]  

  • 74. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments.
    Liu M; Zhang Y; Wang J; Qin N; Yang H; Sun K; Hao J; Shu L; Liu J; Chen Q; Zhang P; Tao TH
    Nat Commun; 2022 Jan; 13(1):79. PubMed ID: 35013205
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [The main evolutionary trends in sensory organs and questing behavior of parasitiform ticks and mites (Parasitiformes)].
    Leonovich SA
    Parazitologiia; 2013; 47(3):204-11. PubMed ID: 24455904
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Expansion and contraction of resource allocation in sensory bottlenecks.
    Edmondson LR; Jiménez Rodríguez A; Saal HP
    Elife; 2022 Aug; 11():. PubMed ID: 35924884
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A NOTE ON THE STAR-NOSED MOLE.
    Allen FH
    Science; 1912 Dec; 36(937):835. PubMed ID: 17742798
    [No Abstract]   [Full Text] [Related]  

  • 78. The star-nosed mole amphibious.
    Merriam CH
    Science; 1884 Nov; 4(92):429. PubMed ID: 17744992
    [No Abstract]   [Full Text] [Related]  

  • 79. Information capacity of single cells in some sensory systems.
    Gestri G
    Biol Cybern; 1976 Jul; 23(3):157-60. PubMed ID: 184850
    [No Abstract]   [Full Text] [Related]  

  • 80. Preliminary evidence for the use of microseismic cues for navigation by the Namib golden mole.
    Lewis ER; Narins PM; Jarvis JU; Bronner G; Mason MJ
    J Acoust Soc Am; 2006 Feb; 119(2):1260-8. PubMed ID: 16521787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.