These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7722082)

  • 61. Ultraviolet protection of Bacillus thuringiensis through microencapsulation with Pickering emulsion method.
    Jalali E; Maghsoudi S; Noroozian E
    Sci Rep; 2020 Nov; 10(1):20633. PubMed ID: 33244110
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Impact of UV radiation on activity of linear furanocoumarins andBacillus thuringiensis var.Kurstaki againstSpodoptera exigua: Implications for tritrophic interactions.
    Trumble JT; Moar WJ; Brewer MJ; Carson WG
    J Chem Ecol; 1991 May; 17(5):973-87. PubMed ID: 24259079
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interactions amongHeliothis virescens larvae, cotton condensed tannin and the CryIA(c) δ-endotoxin ofBacillus thuringiensis.
    Navon A; Hare JD; Federici BA
    J Chem Ecol; 1993 Nov; 19(11):2485-99. PubMed ID: 24248705
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Design and evaluation of an aerial spray trial with true replicates to test the efficacy of Bacillus thuringiensis insecticide in a boreal forest.
    Cadogan BL; Scharbach RD
    J Econ Entomol; 2003 Apr; 96(2):388-95. PubMed ID: 14994805
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Isolation and Characterization of Coproporphyrin Produced by Four Subspecies of Bacillus thuringiensis.
    Harms RL; Martinez DR; Griego VM
    Appl Environ Microbiol; 1986 Mar; 51(3):481-6. PubMed ID: 16347008
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transport of Bacillus thuringiensis var. kurstaki via fomites.
    Van Cuyk S; Veal LA; Simpson B; Omberg KM
    Biosecur Bioterror; 2011 Sep; 9(3):288-300. PubMed ID: 21882970
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Lethal and sublethal effects of Bacillus thuringiensis var. kurstaki on aquatic insects in laboratory bioassays and outdoor stream channels.
    Kreutzweiser DP; Holmes SB; Capell SS; Eichenberg DC
    Bull Environ Contam Toxicol; 1992 Aug; 49(2):252-8. PubMed ID: 1611248
    [No Abstract]   [Full Text] [Related]  

  • 68. Degradation of tannic acid by cold-adapted Klebsiella sp NACASA1 and phytotoxicity assessment of tannic acid and its degradation products.
    Jadhav U; Kadu S; Thokal N; Padul M; Dawkar V; Chougale A; Salve A; Patil M
    Environ Sci Pollut Res Int; 2011 Aug; 18(7):1129-38. PubMed ID: 21336632
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inhibitory activity of pine needle tannin extracts on some agriculturally resourceful microbes.
    Selvakumar G; Saha S; Kundu S
    Indian J Microbiol; 2007 Sep; 47(3):267-70. PubMed ID: 23100676
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tannic acid degradation by Klebsiella strains isolated from goat feces.
    Tahmourespour A; Tabatabaee N; Khalkhali H; Amini I
    Iran J Microbiol; 2016 Feb; 8(1):14-20. PubMed ID: 27092220
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Can a biopesticide based on Bacillus thuringiensis affect the physiology and histomorphology of Arapaima gigas?
    Mariano WS; Oliveira-Lima J; Santuci MA; Lima LBD; Moron SE; Tavares-Dias M
    An Acad Bras Cienc; 2021; 93(suppl 4):e20201715. PubMed ID: 34706005
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Plant defenses: Chlorogenic acid and polyphenol oxidase enhance toxicity ofBacillus thuringiensis subsp.kurstaki toHeliothis zea.
    Ludlum CT; Felton GW; Duffey SS
    J Chem Ecol; 1991 Jan; 17(1):217-37. PubMed ID: 24258447
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tannin sensitivity in larvae ofMalacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation.
    Barbehenn RV; Martin MM
    J Chem Ecol; 1994 Aug; 20(8):1985-2001. PubMed ID: 24242724
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Correction: Multi-Method Approach for Characterizing the Interaction between Fusarium verticillioides and Bacillus thuringiensis Subsp. Kurstaki.
    Rocha LO; Tralamazza SM; Reis GM; Rabinovitch L; Barbosa CB; Corrêa B
    PLoS One; 2019; 14(5):e0216693. PubMed ID: 31071177
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Correction: Multi-Method Approach for Characterizing the Interaction between Fusarium verticillioides and Bacillus thuringiensis Subsp. Kurstaki.
    Rocha LO; Tralamazza SM; Reis GM; Rabinovitch L; Barbosa CB; Corrêa B
    PLoS One; 2015; 10(10):e0141522. PubMed ID: 26488478
    [No Abstract]   [Full Text] [Related]  

  • 76. Phthalide-based host-plant resistance toSpodoptera exigua andTrichoplusia ni inApium graveolens.
    Meade T; Daniel Hare J; Midland SL; Millar JG; Sims JJ
    J Chem Ecol; 1994 Mar; 20(3):709-26. PubMed ID: 24242122
    [TBL] [Abstract][Full Text] [Related]  

  • 77. ANIMAL EXPERIMENTS WITH TANNIC ACID: SUGGESTED BY THE TANNIC ACID TREATMENT OF BURNS.
    Baker RD; Handler P
    Ann Surg; 1943 Sep; 118(3):417-26. PubMed ID: 17858277
    [No Abstract]   [Full Text] [Related]  

  • 78. BURNS TREATED BY TANNIC ACID.
    Beck CS; Powers JH
    Ann Surg; 1926 Jul; 84(1):19-36. PubMed ID: 17865492
    [No Abstract]   [Full Text] [Related]  

  • 79. The Germicidal Effects of Tannic Acid: With and Without the Addition of Mercurial Antiseptics.
    Martin JD; Fowler CD
    Ann Surg; 1934 Jun; 99(6):993-6. PubMed ID: 17867215
    [No Abstract]   [Full Text] [Related]  

  • 80. Tannic Acid and the Treatment of Burns: An Obsequy.
    McClure RD; Lam CR; Romence H
    Ann Surg; 1944 Sep; 120(3):387-98. PubMed ID: 17858498
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.