These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 772222)
1. Frequency of insertion-deletion, transversion, and transition in the evolution of 5S ribosomal RNA. Sankoff D; Cedergren RJ; Lapalme G J Mol Evol; 1976 Mar; 7(2):133-49. PubMed ID: 772222 [TBL] [Abstract][Full Text] [Related]
2. Eukaryotes-prokaryotes divergence estimated by 5S ribosomal RNA sequences. Kimura M; Ohta T Nat New Biol; 1973 Jun; 243(128):199-200. PubMed ID: 4197569 [No Abstract] [Full Text] [Related]
3. The rates of evolution in some ribosomal components. Hori H; Higo K; Osawa S J Mol Evol; 1977 May; 9(3):191-201. PubMed ID: 325217 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide sequence, secondary structure and evolution of the 5S ribosomal RNA from five bacterial species. Vandenberghe A; Wassink A; Raeymaekers P; De Baere R; Huysmans E; De Wachter R Eur J Biochem; 1985 Jun; 149(3):537-42. PubMed ID: 2408888 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Hori H; Osawa S Proc Natl Acad Sci U S A; 1979 Jan; 76(1):381-5. PubMed ID: 284354 [TBL] [Abstract][Full Text] [Related]
6. A new method that simultaneously aligns and reconstructs ancestral sequences for any number of homologous sequences, when the phylogeny is given. Hein J Mol Biol Evol; 1989 Nov; 6(6):649-68. PubMed ID: 2488477 [TBL] [Abstract][Full Text] [Related]
7. Optimal sequence alignment allowing for long gaps. Gotoh O Bull Math Biol; 1990; 52(3):359-73. PubMed ID: 2165832 [TBL] [Abstract][Full Text] [Related]
8. 5S RNA sequence from the Philosamia silkworm: evidence for variable evolutionary rates in insect 5S RNA. Xian-Rong G; Nicoghosian K; Cedergren RJ Nucleic Acids Res; 1982 Sep; 10(18):5711-6. PubMed ID: 7145713 [TBL] [Abstract][Full Text] [Related]
9. The alignment of sets of sequences and the construction of phyletic trees: an integrated method. Hogeweg P; Hesper B J Mol Evol; 1984; 20(2):175-86. PubMed ID: 6433036 [TBL] [Abstract][Full Text] [Related]
10. [Binding of Escherichia coli 50S ribosomal subunit proteins with two large 5S RNA fragments]. Maĭmets TO; Ustav MB; Villems RL; Saarma MIu; Lind AIa Mol Biol (Mosk); 1981; 15(3):569-74. PubMed ID: 7019670 [TBL] [Abstract][Full Text] [Related]
11. Three helical domains form a protein binding site in the 5S RNA-protein complex from eukaryotic ribosomes. Nazar RN; Wildeman AG Nucleic Acids Res; 1983 May; 11(10):3155-68. PubMed ID: 6344007 [TBL] [Abstract][Full Text] [Related]
12. Intermolecular base-paired interaction between complementary sequences present near the 3' ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits. Azad AA Nucleic Acids Res; 1979 Dec; 7(7):1913-29. PubMed ID: 94160 [TBL] [Abstract][Full Text] [Related]
13. An NMR study of the helix V-loop E region of the 5S RNA from Escherichia coli. Zhang P; Moore PB Biochemistry; 1989 May; 28(11):4607-15. PubMed ID: 2669961 [TBL] [Abstract][Full Text] [Related]
14. Sequences of 5S ribosomal RNA from Xenopus mulleri and the evolution of 5S gene-coding sequences. Ford PJ; Brown RD Cell; 1976 Aug; 8(4):485-93. PubMed ID: 986255 [TBL] [Abstract][Full Text] [Related]
16. Effects of mutation on the downfield proton nuclear magnetic resonance spectrum of the 5S RNA of Escherichia coli. Gewirth DT; Moore PB Biochemistry; 1987 Sep; 26(18):5657-65. PubMed ID: 3314994 [TBL] [Abstract][Full Text] [Related]
17. The nucleotide sequence of 5S ribosomal RNA from Micrococcus lysodeikticus. Hori H; Osawa S; Murao K; Ishikura H Nucleic Acids Res; 1980 Nov; 8(22):5423-6. PubMed ID: 6780979 [TBL] [Abstract][Full Text] [Related]
18. Chemical reactivity of E. coli 5S RNA in situ in the 50S ribosomal subunit. Silberklang M; RajBhandary UL; Lück A; Erdmann VA Nucleic Acids Res; 1983 Feb; 11(3):605-17. PubMed ID: 6340064 [TBL] [Abstract][Full Text] [Related]
19. Two complex regions, including a TATA sequence, are required for transcription by RNA polymerase I in Neurospora crassa. Tyler BM Nucleic Acids Res; 1990 Apr; 18(7):1805-11. PubMed ID: 2139932 [TBL] [Abstract][Full Text] [Related]