BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7722303)

  • 1. Constitutive endocytosis and degradation of CD22 by human B cells.
    Shan D; Press OW
    J Immunol; 1995 May; 154(9):4466-75. PubMed ID: 7722303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties.
    Carnahan J; Wang P; Kendall R; Chen C; Hu S; Boone T; Juan T; Talvenheimo J; Montestruque S; Sun J; Elliott G; Thomas J; Ferbas J; Kern B; Briddell R; Leonard JP; Cesano A
    Clin Cancer Res; 2003 Sep; 9(10 Pt 2):3982S-90S. PubMed ID: 14506197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B cell antigen receptor-mediated apoptosis. Importance of accessory molecules CD19 and CD22, and of surface IgM cross-linking.
    Chaouchi N; Vazquez A; Galanaud P; Leprince C
    J Immunol; 1995 Apr; 154(7):3096-104. PubMed ID: 7534787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular CD22 rapidly moves to the cell surface in a tyrosine kinase-dependent manner following antigen receptor stimulation.
    Sherbina NV; Linsley PS; Myrdal S; Grosmaire LS; Ledbetter JA; Schieven GL
    J Immunol; 1996 Nov; 157(10):4390-8. PubMed ID: 8906814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD22 as a target of passive immunotherapy.
    Cesano A; Gayko U
    Semin Oncol; 2003 Apr; 30(2):253-7. PubMed ID: 12720147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of the B cell-restricted molecule CD22 on neonatal B lymphocytes depending upon antigen stimulation.
    Viemann D; Schlenke P; Hammers HJ; Kirchner H; Kruse A
    Eur J Immunol; 2000 Feb; 30(2):550-9. PubMed ID: 10671211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B cell antigen receptor-evoked calcium influx is enhanced in CD22-deficient B cell lines.
    Nadler MJ; McLean PA; Neel BG; Wortis HH
    J Immunol; 1997 Nov; 159(9):4233-43. PubMed ID: 9379018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphotyrosine-dependent association between CD22 and protein tyrosine phosphatase 1C.
    Campbell MA; Klinman NR
    Eur J Immunol; 1995 Jun; 25(6):1573-9. PubMed ID: 7542197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of CD22 with the B cell antigen receptor.
    Peaker CJ; Neuberger MS
    Eur J Immunol; 1993 Jun; 23(6):1358-63. PubMed ID: 7684686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the expression and gene promoter of CD22 in murine B cells.
    Andersson KB; Draves KE; Magaletti DM; Fujioka S; Holmes KL; Law CL; Clark EA
    Eur J Immunol; 1996 Dec; 26(12):3170-8. PubMed ID: 8977319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential control of CD22 ligand expression on B and T lymphocytes, and enhanced expression in murine systemic lupus.
    Lajaunias F; Ida A; Kikuchi S; Fossati-Jimack L; Martinez-Soria E; Moll T; Law CL; Izui S
    Arthritis Rheum; 2003 Jun; 48(6):1612-21. PubMed ID: 12794829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane CD22 defines circulating myeloma-related cells as mature or later B cells.
    Perfetti V; Vignarelli MC; Bellotti V; Glennie MJ; Zorzoli I; Ubbiali P; Obici L; Massa M; Ippoliti G; Ascari E; Merlini G
    Lab Invest; 1997 Oct; 77(4):333-44. PubMed ID: 9354768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human hematopoietic cell lines: a model system for study of minimal residual disease detection technique in acute leukemia.
    Koníková E; Kusenda J; Babusíková O; Glasová M
    Neoplasma; 1995; 42(5):227-34. PubMed ID: 8552200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of intracellular lymphoid differentiation antigens by flow cytometry in acute lymphoblastic leukemia.
    Sartor M; Bradstock K
    Cytometry; 1994 Sep; 18(3):119-22. PubMed ID: 7813331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLP-76 is recruited to CD22 and dephosphorylated by SHP-1, thereby regulating B cell receptor-induced c-Jun N-terminal kinase activation.
    Mizuno K; Tagawa Y; Watanabe N; Ogimoto M; Yakura H
    Eur J Immunol; 2005 Feb; 35(2):644-54. PubMed ID: 15668918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma.
    DiJoseph JF; Goad ME; Dougher MM; Boghaert ER; Kunz A; Hamann PR; Damle NK
    Clin Cancer Res; 2004 Dec; 10(24):8620-9. PubMed ID: 15623646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor.
    Sato S; Tuscano JM; Inaoki M; Tedder TF
    Semin Immunol; 1998 Aug; 10(4):287-97. PubMed ID: 9695185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma.
    Vallera DA; Todhunter DA; Kuroki DW; Shu Y; Sicheneder A; Chen H
    Clin Cancer Res; 2005 May; 11(10):3879-88. PubMed ID: 15897589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies.
    Press OW; Farr AG; Borroz KI; Anderson SK; Martin PJ
    Cancer Res; 1989 Sep; 49(17):4906-12. PubMed ID: 2667754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity.
    Chen J; McLean PA; Neel BG; Okunade G; Shull GE; Wortis HH
    Nat Immunol; 2004 Jun; 5(6):651-7. PubMed ID: 15133509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.