These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7723012)

  • 41. Computation and NMR crystallography of terbutaline sulfate.
    Harris RK; Hodgkinson P; Zorin V; Dumez JN; Elena-Herrmann B; Emsley L; Salager E; Stein RS
    Magn Reson Chem; 2010 Dec; 48 Suppl 1():S103-12. PubMed ID: 20589731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.
    Kuszewski J; Gronenborn AM; Clore GM
    Protein Sci; 1996 Jun; 5(6):1067-80. PubMed ID: 8762138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Powder crystallography by combined crystal structure prediction and high-resolution 1H solid-state NMR spectroscopy.
    Salager E; Day GM; Stein RS; Pickard CJ; Elena B; Emsley L
    J Am Chem Soc; 2010 Mar; 132(8):2564-6. PubMed ID: 20136091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy.
    Baias M; Widdifield CM; Dumez JN; Thompson HP; Cooper TG; Salager E; Bassil S; Stein RS; Lesage A; Day GM; Emsley L
    Phys Chem Chem Phys; 2013 Jun; 15(21):8069-80. PubMed ID: 23503809
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Crystallographic and NMR spectroscopic protein structures: the inter-residue contacts].
    Abaturov LV; Nosova NG
    Mol Biol (Mosk); 2012; 46(2):317-34. PubMed ID: 22670528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Validation of the first step of the heuristic refinement method for the derivation of solution structures of proteins from NMR data.
    Lichtarge O; Cornelius CW; Buchanan BG; Jardetzky O
    Proteins; 1987; 2(4):340-58. PubMed ID: 3448608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability.
    Smith SG; Goodman JM
    J Am Chem Soc; 2010 Sep; 132(37):12946-59. PubMed ID: 20795713
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A method for the calculation of protein alpha-CH chemical shifts.
    Williamson MP; Asakura T; Nakamura E; Demura M
    J Biomol NMR; 1992 Jan; 2(1):83-98. PubMed ID: 1330129
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing the accuracy of protein structures by quantum mechanical computations of 13C(alpha) chemical shifts.
    Vila JA; Scheraga HA
    Acc Chem Res; 2009 Oct; 42(10):1545-53. PubMed ID: 19572703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Benchmark Theoretical and Experimental Study on (15)N NMR Shifts of Oxidatively Damaged Guanine.
    Dračínský M; Šála M; Klepetářová B; Šebera J; Fukal J; Holečková V; Tanaka Y; Nencka R; Sychrovský V
    J Phys Chem B; 2016 Feb; 120(5):915-25. PubMed ID: 26727398
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deviations from standard atomic volumes as a quality measure for protein crystal structures.
    Pontius J; Richelle J; Wodak SJ
    J Mol Biol; 1996 Nov; 264(1):121-36. PubMed ID: 8950272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystallographic phasing with NMR models: an envelope approach.
    Zhang W; Zhang T; Zhang H; Hao Q
    Acta Crystallogr D Biol Crystallogr; 2014 Jul; 70(Pt 7):1977-82. PubMed ID: 25004974
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identifying aspirin polymorphs from combined DFT-based crystal structure prediction and solid-state NMR.
    Mathew R; Uchman KA; Gkoura L; Pickard CJ; Baias M
    Magn Reson Chem; 2020 Nov; 58(11):1018-1025. PubMed ID: 31900955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NMR chemical shift prediction of glycans: application of the computer program CASPER in structural analysis.
    Lundborg M; Widmalm G
    Methods Mol Biol; 2015; 1273():29-40. PubMed ID: 25753701
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Defining the precision with which a protein structure is determined by NMR. Application to motilin.
    Shriver J; Edmondson S
    Biochemistry; 1993 Feb; 32(6):1610-7. PubMed ID: 8431440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The precision of NMR structure ensembles revisited.
    Spronk CA; Nabuurs SB; Bonvin AM; Krieger E; Vuister GW; Vriend G
    J Biomol NMR; 2003 Mar; 25(3):225-34. PubMed ID: 12652134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 2DCSi: identification of protein secondary structure and redox state using 2D cluster analysis of NMR chemical shifts.
    Wang CC; Chen JH; Lai WC; Chuang WJ
    J Biomol NMR; 2007 May; 38(1):57-63. PubMed ID: 17333485
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Errors in three dimensions.
    Janin J
    Biochimie; 1990 Oct; 72(10):705-9. PubMed ID: 2078587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Solid-State NMR-Driven Crystal Structure Prediction of Molecular Crystals: The Case of Mebendazole.
    Bravetti F; Bordignon S; Alig E; Eisenbeil D; Fink L; Nervi C; Gobetto R; Schmidt MU; Chierotti MR
    Chemistry; 2022 Jan; 28(6):e202103589. PubMed ID: 34962330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recovering the Missing Regions in Crystal Structures from the Nuclear Magnetic Resonance Measurement Data Using Matrix Completion Method.
    Li Z; Li S; Wei X; Peng X; Zhao Q
    J Comput Biol; 2020 May; 27(5):709-717. PubMed ID: 31502861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.