BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 7723015)

  • 21. Mutant Mos1 mariner transposons are hyperactive in Aedes aegypti.
    Pledger DW; Coates CJ
    Insect Biochem Mol Biol; 2005 Oct; 35(10):1199-207. PubMed ID: 16102425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gamma delta transposase and integration host factor bind cooperatively at both ends of gamma delta.
    Wiater LA; Grindley ND
    EMBO J; 1988 Jun; 7(6):1907-11. PubMed ID: 2844529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional analysis of unique class II insertion sequence IS1071.
    Sota M; Yano H; Nagata Y; Ohtsubo Y; Genka H; Anbutsu H; Kawasaki H; Tsuda M
    Appl Environ Microbiol; 2006 Jan; 72(1):291-7. PubMed ID: 16391056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA-binding activity and subunit interaction of the mariner transposase.
    Zhang L; Dawson A; Finnegan DJ
    Nucleic Acids Res; 2001 Sep; 29(17):3566-75. PubMed ID: 11522826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition.
    Butler MG; Chakraborty SA; Lampe DJ
    Genetica; 2006 May; 127(1-3):351-66. PubMed ID: 16850239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors.
    Czyz A; Stillmock KA; Hazuda DJ; Reznikoff WS
    Biochemistry; 2007 Sep; 46(38):10776-89. PubMed ID: 17725323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of Tn5 transposase with the transposon termini.
    Wiegand TW; Reznikoff WS
    J Mol Biol; 1994 Jan; 235(2):486-95. PubMed ID: 8289277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction.
    Naigamwalla DZ; Coros CJ; Wu Z; Chaconas G
    J Mol Biol; 1998 Sep; 282(2):265-74. PubMed ID: 9735286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The arginine repressor of Escherichia coli K-12 makes direct contacts to minor and major groove determinants of the operators.
    Wang H; Glansdorff N; Charlier D
    J Mol Biol; 1998 Apr; 277(4):805-24. PubMed ID: 9545374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA binding specificity and cleavage activity of Pacmmar transposase.
    Delaurière L; Chénais B; Pradier E; Hardivillier Y; Renault S; Casse N
    Biochemistry; 2009 Aug; 48(30):7279-86. PubMed ID: 19530701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific binding of transposase to terminal inverted repeats of transposable element Tn3.
    Ichikawa H; Ikeda K; Wishart WL; Ohtsubo E
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8220-4. PubMed ID: 2825182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of two domains with helix-turn-helix and zinc finger motifs in the binding of IS1 transposase to terminal inverted repeats.
    Ohta S; Yoshimura E; Ohtsubo E
    Mol Microbiol; 2004 Jul; 53(1):193-202. PubMed ID: 15225314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tn5 transposase loops DNA in the absence of Tn5 transposon end sequences.
    Adams CD; Schnurr B; Skoko D; Marko JF; Reznikoff WS
    Mol Microbiol; 2006 Dec; 62(6):1558-68. PubMed ID: 17074070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro recombination and inverted terminal repeat binding activities of the Mcmar1 transposase.
    Renault S; Demattéi MV; Lahouassa H; Bigot Y; Augé-Gouillou C
    Biochemistry; 2010 May; 49(17):3534-44. PubMed ID: 20359246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates.
    Izsvák Z; Ivics Z; Plasterk RH
    J Mol Biol; 2000 Sep; 302(1):93-102. PubMed ID: 10964563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of variation of inverted-repeat sequences on reactions mediated by the transposase of Tn21.
    Martin C; Grinsted J; de la Cruz F
    J Bacteriol; 1989 Jul; 171(7):3996-4001. PubMed ID: 2544566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition of inverted-repeat SINEs.
    Unsal K; Morgan GT
    J Mol Biol; 1995 May; 248(4):812-23. PubMed ID: 7752242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Information analysis of sequences that bind the replication initiator RepA.
    Papp PP; Chattoraj DK; Schneider TD
    J Mol Biol; 1993 Sep; 233(2):219-30. PubMed ID: 8377199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional analysis of the two domains in the terminal inverted repeat sequence required for transposition of Tn3.
    Amemura-Maekawa J; Ohtsubo E
    Gene; 1991 Jul; 103(1):11-6. PubMed ID: 1652540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of the IS903 transposase to its inverted repeat in vitro.
    Derbyshire KM; Grindley ND
    EMBO J; 1992 Sep; 11(9):3449-55. PubMed ID: 1324175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.