These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 7723029)
1. The zinc coordination site of the bacteriophage Mu translational activator protein, Com. Witkowski RT; Hattman S; Newman L; Clark K; Tierney DL; Penner-Hahn J; McLendon G J Mol Biol; 1995 Apr; 247(4):753-64. PubMed ID: 7723029 [TBL] [Abstract][Full Text] [Related]
2. Zinc site redesign in T4 gene 32 protein: structure and stability of cobalt(II) complexes formed by wild-type and metal ligand substitution mutants. Guo J; Giedroc DP Biochemistry; 1997 Jan; 36(4):730-42. PubMed ID: 9020770 [TBL] [Abstract][Full Text] [Related]
3. Zinc finger motif for single-stranded nucleic acids? Investigations by nuclear magnetic resonance. Summers MF J Cell Biochem; 1991 Jan; 45(1):41-8. PubMed ID: 2005183 [TBL] [Abstract][Full Text] [Related]
4. Solution structure of a naturally-occurring zinc-peptide complex demonstrates that the N-terminal zinc-binding module of the Lasp-1 LIM domain is an independent folding unit. Hammarström A; Berndt KD; Sillard R; Adermann K; Otting G Biochemistry; 1996 Oct; 35(39):12723-32. PubMed ID: 8841116 [TBL] [Abstract][Full Text] [Related]
5. NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Razmiafshari M; Kao J; d'Avignon A; Zawia NH Toxicol Appl Pharmacol; 2001 Apr; 172(1):1-10. PubMed ID: 11264017 [TBL] [Abstract][Full Text] [Related]
6. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface. Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924 [TBL] [Abstract][Full Text] [Related]
7. Com, the phage Mu mom translational activator, is a zinc-binding protein that binds specifically to its cognate mRNA. Hattman S; Newman L; Murthy HM; Nagaraja V Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10027-31. PubMed ID: 1835088 [TBL] [Abstract][Full Text] [Related]
8. The solution structure of ribosomal protein L36 from Thermus thermophilus reveals a zinc-ribbon-like fold. Härd T; Rak A; Allard P; Kloo L; Garber M J Mol Biol; 2000 Feb; 296(1):169-80. PubMed ID: 10656825 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. Kloiber K; Weiskirchen R; Kräutler B; Bister K; Konrat R J Mol Biol; 1999 Oct; 292(4):893-908. PubMed ID: 10525413 [TBL] [Abstract][Full Text] [Related]
10. Measles virus V protein binds zinc. Liston P; Briedis DJ Virology; 1994 Jan; 198(1):399-404. PubMed ID: 8259680 [TBL] [Abstract][Full Text] [Related]
11. DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. Laity JH; Dyson HJ; Wright PE J Mol Biol; 2000 Jan; 295(4):719-27. PubMed ID: 10656784 [TBL] [Abstract][Full Text] [Related]
12. Contributions of cysteine residues in Zn2 to zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ. Shi YY; Tang W; Hao SF; Wang CC Biochemistry; 2005 Feb; 44(5):1683-9. PubMed ID: 15683252 [TBL] [Abstract][Full Text] [Related]
13. Metal- and DNA-binding properties and mutational analysis of the transcription activating factor, B, of coliphage 186: a prokaryotic C4 zinc-finger protein. Pountney DL; Tiwari RP; Egan JB Protein Sci; 1997 Apr; 6(4):892-902. PubMed ID: 9098899 [TBL] [Abstract][Full Text] [Related]
14. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569 [TBL] [Abstract][Full Text] [Related]
15. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: determinants of affinity and sequence specificity. Wuttke DS; Foster MP; Case DA; Gottesfeld JM; Wright PE J Mol Biol; 1997 Oct; 273(1):183-206. PubMed ID: 9367756 [TBL] [Abstract][Full Text] [Related]
16. Determination of the pK(a) of the four Zn2+-coordinating residues of the distal finger motif of the HIV-1 nucleocapsid protein: consequences on the binding of Zn2+. Bombarda E; Morellet N; Cherradi H; Spiess B; Bouaziz S; Grell E; Roques BP; Mély Y J Mol Biol; 2001 Jul; 310(3):659-72. PubMed ID: 11439030 [TBL] [Abstract][Full Text] [Related]
17. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II. Vogel A; Schilling O; Meyer-Klaucke W Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536 [TBL] [Abstract][Full Text] [Related]
18. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides. Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663 [TBL] [Abstract][Full Text] [Related]
19. Cooperative metal binding and helical folding in model peptides of treble-clef zinc fingers. Sénèque O; Bonnet E; Joumas FL; Latour JM Chemistry; 2009; 15(19):4798-810. PubMed ID: 19388025 [TBL] [Abstract][Full Text] [Related]
20. Refinement of a homology model of the mu-opioid receptor using distance constraints from intrinsic and engineered zinc-binding sites. Fowler CB; Pogozheva ID; LeVine H; Mosberg HI Biochemistry; 2004 Jul; 43(27):8700-10. PubMed ID: 15236578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]