BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 7723031)

  • 1. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
    MacKerell AD; Sommer MS; Karplus M
    J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches.
    Hirono S; Kollman PA
    J Mol Biol; 1990 Mar; 212(1):197-209. PubMed ID: 2157020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2'GMP.
    Vassylyev DG; Katayanagi K; Ishikawa K; Tsujimoto-Hirano M; Danno M; Pähler A; Matsumoto O; Matsushima M; Yoshida H; Morikawa K
    J Mol Biol; 1993 Apr; 230(3):979-96. PubMed ID: 8386773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of ribonuclease T1: comparison of the free enzyme and the 2' GMP-enzyme complex.
    MacKerell AD; Nilsson L; Rigler R; Heinemann U; Saenger W
    Proteins; 1989; 6(1):20-31. PubMed ID: 2558378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic analysis of the equilibrium, association and dissociation of 2'GMP and 3'GMP with ribonuclease T1 at pH 5.3.
    MacKerell AD; Rigler R; Hahn U; Saenger W
    Biochim Biophys Acta; 1991 Mar; 1073(2):357-65. PubMed ID: 1849008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site specific point mutation changes specificity: a molecular modeling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T1 substrate interactions.
    Elofsson A; Kulinski T; Rigler R; Nilsson L
    Proteins; 1993 Oct; 17(2):161-75. PubMed ID: 8265564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding modes of inhibitors to ribonuclease T1 as elucidated by the analysis of two-dimensional NMR.
    Shimada I; Inagaki F
    Nucleic Acids Symp Ser; 1989; (21):57-8. PubMed ID: 2514414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer modeling studies of ribonuclease T1-guanosine monophosphate complexes.
    Balaji PV; Saenger W; Rao VS
    Biopolymers; 1990; 30(3-4):257-72. PubMed ID: 2177661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease.
    Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP
    J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-dependent pKa values in proteins--a theoretical analysis of protonation energies with practical consequences for enzymatic reactions.
    Bombarda E; Ullmann GM
    J Phys Chem B; 2010 Feb; 114(5):1994-2003. PubMed ID: 20088566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of internal motions of RNase T1 complexed with a productive substrate involving 15N NMR relaxation measurements.
    Yoshida Y; Tanaka M; Ohkuri T; Tanaka Y; Imoto T; Ueda T
    J Biochem; 2006 Jul; 140(1):43-8. PubMed ID: 16877767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorescence and optically detected magnetic resonance measurements of the 2'AMP and 2'GMP complexes of a mutant ribonuclease T1 (Y45W) in solution: correlation with X-ray crystal structures.
    Lam WC; Maki AH; Itoh T; Hakoshima T
    Biochemistry; 1992 Jul; 31(29):6756-60. PubMed ID: 1322171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding modes of inhibitors of ribonuclease T1 as elucidated by analysis of two-dimensional NMR.
    Shimada I; Inagaki F
    Biochemistry; 1990 Jan; 29(3):757-64. PubMed ID: 2159788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of ribonuclease T1. Effect of solvent on the interaction with 2'GMP.
    MacKerell AD; Rigler R; Nilsson L; Heinemann U; Saenger W
    Eur Biophys J; 1988; 16(5):287-97. PubMed ID: 2853669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations.
    Archontis G; Simonson T; Moras D; Karplus M
    J Mol Biol; 1998 Feb; 275(5):823-46. PubMed ID: 9480772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the pH dependence of protein stability.
    Yang AS; Honig B
    J Mol Biol; 1993 May; 231(2):459-74. PubMed ID: 8510157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis.
    Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG
    Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple protonation equilibria in electrostatics of protein-protein binding.
    Piłat Z; Antosiewicz JM
    J Phys Chem B; 2008 Nov; 112(47):15074-85. PubMed ID: 18950218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.