These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7724041)

  • 1. Responses of retinal and tectal neurons in non-paralyzed toads Bufo bufo and B. marinus to the real size versus angular size of objects moved at variable distance.
    Spreckelsen C; Schürg-Pfeiffer E; Ewert JP
    Neurosci Lett; 1995 Jan; 184(2):105-8. PubMed ID: 7724041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant 'position indicators'.
    Tsai HJ; Ewert JP
    J Comp Physiol A; 1987 Aug; 161(2):295-304. PubMed ID: 3114477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of stationary and moving textured backgrounds on the response of visual neurons in toads (Bufo bufo L.).
    Tsai HJ; Ewert JP
    Brain Behav Evol; 1988; 32(1):27-38. PubMed ID: 3142636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad, Bufo bufo L.
    Satou M; Ewert JP
    J Comp Physiol A; 1985 Dec; 157(6):739-48. PubMed ID: 3939244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L.).
    Roth G; Jordan M
    Exp Brain Res; 1982; 45(3):393-8. PubMed ID: 6802665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopaminergic modulation of visual responses in toads. II. Influences of apomorphine on retinal ganglion cells and tectal cells.
    Glagow M; Ewert JP
    J Comp Physiol A; 1997 Jan; 180(1):11-8. PubMed ID: 9008366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural model of the interaction of tectal columns in prey-catching behavior.
    Arbib MA; Lara R
    Biol Cybern; 1982; 44(3):185-96. PubMed ID: 7115796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pretectal lesions on tectal responses to visual stimulation in anurans: field potential, single neuron and behavior analyses.
    Ewert JP; Schürg-Pfeiffer E; Schwippert WW
    Acta Biol Hung; 1996; 47(1-4):89-111. PubMed ID: 9124015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between activity of tectal neurons and prey-catching behavior in toads Bufo bufo.
    Megela AL; Borchers HW; Ewert JP
    Naturwissenschaften; 1983 Feb; 70(2):100-2. PubMed ID: 6405285
    [No Abstract]   [Full Text] [Related]  

  • 10. Increases of excitatory receptive fields of retinal ganglion cells in common toads under apomorphine are not associated with size preference in prey-snapping.
    Glagow M; Ewert JP
    Neurosci Lett; 1994 May; 173(1-2):83-6. PubMed ID: 7936430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of object size in retinotectal microcircuits.
    Preuss SJ; Trivedi CA; vom Berg-Maurer CM; Ryu S; Bollmann JH
    Curr Biol; 2014 Oct; 24(20):2376-85. PubMed ID: 25242030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optic terminals form axosomatic synapses with deep tectal neurons in Bufo marinus.
    Gábriel R; Straznicky C
    Neurobiology (Bp); 1993; 1(4):313-25. PubMed ID: 8069289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal correlates of edge preference in prey-catching behavior of toads Bufo bufo.
    Tsai H; Burghagen H; Schürg-Pfeiffer E; Ewert JP
    Naturwissenschaften; 1983 Jun; 70(6):310-1. PubMed ID: 6410287
    [No Abstract]   [Full Text] [Related]  

  • 14. Neuropeptide Y (NPY) or fragment NPY 13-36, but not NPY 18-36, inhibit retinotectal transfer in cane toads Bufo marinus.
    Schwippert WW; Röttgen A; Ewert JP
    Neurosci Lett; 1998 Aug; 253(1):33-6. PubMed ID: 9754798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic dynamics mediate sensitivity to motion independent of stimulus details.
    Luksch H; Khanbabaie R; Wessel R
    Nat Neurosci; 2004 Apr; 7(4):380-8. PubMed ID: 14990932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection.
    Xiong M; Pallas SL; Lim S; Finlay BL
    J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of medullary neurons to moving visual stimuli in the common toad. I. Characterization of medial reticular neurons by extracellular recording.
    Ewert JP; Framing EM; Schürg-Pfeiffer E; Weerasuriya A
    J Comp Physiol A; 1990 Sep; 167(4):495-508. PubMed ID: 2124265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of neonatal enucleation on receptive-field properties of visual neurons in superior colliculus of the golden hamster.
    Rhoades RW; Chalupa LM
    J Neurophysiol; 1980 Mar; 43(3):595-611. PubMed ID: 7373351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of postsynaptic potentials of tectal neurons of the frog: correlation with impulses recorded from the terminals of retinotectal afferents.
    Nagano K; Li QL; Tamada A; Matsumoto N
    Exp Brain Res; 1988; 70(2):429-32. PubMed ID: 3260193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disproportionate distribution of field potentials across the toad's tectal visual map in response to diffuse light ON and OFF stimulations.
    Schwippert WW; Beneke TW; Ewert JP
    Vision Res; 1996 Jan; 36(1):19-26. PubMed ID: 8746239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.