BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7724481)

  • 1. Metabolism of acetylneurotensin(8-13) by proteolytic activities of intestinal enterocytes.
    Bai JP; Chang LL
    Pharm Res; 1995 Jan; 12(1):164-7. PubMed ID: 7724481
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of site-dependent degradation of peptide drugs within the gut of rats and rabbits.
    Bai JP; Chang LL
    J Pharm Pharmacol; 1993 Dec; 45(12):1085-7. PubMed ID: 7908979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of regional differences in activities of brush-border membrane peptidases within the rat intestine on site-dependent stability of peptide drugs.
    Bai JP
    Life Sci; 1993; 53(15):1193-201. PubMed ID: 8412476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular distribution of proteolytic activities degrading bioactive peptides and analogues in the rat small intestinal and colonic enterocytes.
    Bai JP
    J Pharm Pharmacol; 1994 Aug; 46(8):671-5. PubMed ID: 7815282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of brush-border membrane peptidases along the intestine of rabbits and rats: implication for site-specific delivery of peptide drugs.
    Bai JP
    J Drug Target; 1993; 1(3):231-6. PubMed ID: 8069564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of angiotensin-(1-7) from the rat hindlimb: influence of angiotensin-converting enzyme inhibition.
    Chappell MC; Gomez MN; Pirro NT; Ferrario CM
    Hypertension; 2000 Jan; 35(1 Pt 2):348-52. PubMed ID: 10642323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a dual inhibitor of angiotensin I-converting enzyme and neutral endopeptidase.
    French JF; Flynn GA; Giroux EL; Mehdi S; Anderson B; Beach DC; Koehl JR; Dage RC
    J Pharmacol Exp Ther; 1994 Jan; 268(1):180-6. PubMed ID: 8301555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways for angiotensin-(1---7) metabolism in pulmonary and renal tissues.
    Allred AJ; Diz DI; Ferrario CM; Chappell MC
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F841-50. PubMed ID: 11053044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiation of bradykinin effect by angiotensin-converting enzyme inhibition does not correlate with angiotensin-converting enzyme activity in the rat mesenteric arteries.
    Sivieri DO; Bispo-da-Silva LB; Oliveira EB; Resende AC; Salgado MC
    Hypertension; 2007 Jul; 50(1):110-5. PubMed ID: 17470724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CGS 35601 and its orally active prodrug CGS 37808 as triple inhibitors of endothelin-converting enzyme-1, neutral endopeptidase 24.11, and angiotensin-converting enzyme.
    Trapani AJ; Beil ME; Bruseo CW; Savage P; Firooznia F; Jeng AY
    J Cardiovasc Pharmacol; 2004 Nov; 44 Suppl 1():S211-5. PubMed ID: 15838282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemorphins derived from hemoglobin have an inhibitory action on angiotensin converting enzyme activity.
    Lantz I; Glämsta EL; Talbäck L; Nyberg F
    FEBS Lett; 1991 Aug; 287(1-2):39-41. PubMed ID: 1652464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of three ectopeptidases on corticotropin-releasing factor: metabolism and functional aspects.
    Ritchie JC; Davis TP; Nemeroff CB
    Neuropsychopharmacology; 2003 Jan; 28(1):22-33. PubMed ID: 12496937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of neurotensin by rat brain synaptic membranes: involvement of a thermolysin-like metalloendopeptidase (enkephalinase), angiotensin-converting enzyme, and other unidentified peptidases.
    Checler F; Vincent JP; Kitabgi P
    J Neurochem; 1983 Aug; 41(2):375-84. PubMed ID: 6308159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition and inhibition kinetics of angiotensin converting enzyme activity by hemorphins, isolated from a peptic bovine hemoglobin hydrolysate.
    Zhao Q; Sannier F; Garreau I; Guillochon D; Piot JM
    Biochem Biophys Res Commun; 1994 Oct; 204(1):216-23. PubMed ID: 7945362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism.
    Rice GI; Thomas DA; Grant PJ; Turner AJ; Hooper NM
    Biochem J; 2004 Oct; 383(Pt 1):45-51. PubMed ID: 15283675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II.
    Shaltout HA; Westwood BM; Averill DB; Ferrario CM; Figueroa JP; Diz DI; Rose JC; Chappell MC
    Am J Physiol Renal Physiol; 2007 Jan; 292(1):F82-91. PubMed ID: 16896185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin metabolism in rat stomach wall: prevalence of angiotensin-(1-7) formation.
    Olszanecki R; Madej J; Suski M; Gebska A; Bujak-Gizycka B; Korbut R
    J Physiol Pharmacol; 2009 Mar; 60(1):191-6. PubMed ID: 19439822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo evaluation of new radiolabeled neurotensin(8-13) analogues with high affinity for NT1 receptors.
    García-Garayoa E; Allemann-Tannahill L; Bläuenstein P; Willmann M; Carrel-Rémy N; Tourwé D; Iterbeke K; Conrath P; Schubiger PA
    Nucl Med Biol; 2001 Jan; 28(1):75-84. PubMed ID: 11182567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antihypertensive peptides derived from food proteins.
    Yamamoto N
    Biopolymers; 1997; 43(2):129-34. PubMed ID: 9216248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow-ups to early studies.
    Skidgel RA; Erdös EG
    Peptides; 2004 Mar; 25(3):521-5. PubMed ID: 15134871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.