BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 7724537)

  • 1. Residue replacements of buried aspartyl and related residues in sensory rhodopsin I: D201N produces inverted phototaxis signals.
    Olson KD; Zhang XN; Spudich JL
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3185-9. PubMed ID: 7724537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protonatable residues at the cytoplasmic end of transmembrane helix-2 in the signal transducer HtrI control photochemistry and function of sensory rhodopsin I.
    Jung KH; Spudich JL
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6557-61. PubMed ID: 8692855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism.
    Jung KH; Spudich JL
    J Bacteriol; 1998 Apr; 180(8):2033-42. PubMed ID: 9555883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. His166 is critical for active-site proton transfer and phototaxis signaling by sensory rhodopsin I.
    Zhang XN; Spudich JL
    Biophys J; 1997 Sep; 73(3):1516-23. PubMed ID: 9284318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge.
    Spudich EN; Zhang W; Alam M; Spudich JL
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4960-5. PubMed ID: 9144172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HtrI is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I.
    Zhang XN; Spudich JL
    J Biol Chem; 1998 Jul; 273(31):19722-8. PubMed ID: 9677402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle.
    Olson KD; Spudich JL
    Biophys J; 1993 Dec; 65(6):2578-85. PubMed ID: 8312493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I.
    Sasaki J; Takahashi H; Furutani Y; Sineshchekov OA; Spudich JL; Kandori H
    Biochemistry; 2014 Sep; 53(37):5923-9. PubMed ID: 25162914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.
    Zhang W; Brooun A; Mueller MM; Alam M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis.
    Spudich EN; Takahashi T; Spudich JL
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7746-50. PubMed ID: 2682623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of distinct domains for signaling and receptor interaction of the sensory rhodopsin I transducer, HtrI.
    Yao VJ; Spudich EN; Spudich JL
    J Bacteriol; 1994 Nov; 176(22):6931-5. PubMed ID: 7961454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Schiff base counterion of bacteriorhodopsin is protonated in sensory rhodopsin I: spectroscopic and functional characterization of the mutated proteins D76N and D76A.
    Rath P; Olson KD; Spudich JL; Rothschild KJ
    Biochemistry; 1994 May; 33(18):5600-6. PubMed ID: 8180184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I.
    Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ
    Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriorhodopsin is involved in halobacterial photoreception.
    Bibikov SI; Grishanin RN; Kaulen AD; Marwan W; Oesterhelt D; Skulachev VP
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9446-50. PubMed ID: 8415720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I.
    Bogomolni RA; Stoeckenius W; Szundi I; Perozo E; Olson KD; Spudich JL
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10188-92. PubMed ID: 7937859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes.
    Sasaki J; Tsai AL; Spudich JL
    J Biol Chem; 2011 May; 286(21):18868-77. PubMed ID: 21454480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transducer-binding and transducer-mutations modulate photoactive-site-deprotonation in sensory rhodopsin I.
    Jung KH; Spudich EN; Dag P; Spudich JL
    Biochemistry; 1999 Oct; 38(40):13270-4. PubMed ID: 10529200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of substitutions D73E, D73N, D103N and V106M on signaling and pH titration of sensory rhodopsin II.
    Zhu J; Spudich EN; Alam M; Spudich JL
    Photochem Photobiol; 1997 Dec; 66(6):788-91. PubMed ID: 9421965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å.
    Spudich EN; Ozorowski G; Schow EV; Tobias DJ; Spudich JL; Luecke H
    J Mol Biol; 2012 Jan; 415(3):455-63. PubMed ID: 22123198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.