These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 7725339)
1. Effect of various Viperidae and Crotalidae snake venoms on endothelial cells in vitro. Borkow G; Lomonte B; Gutiérrez JM; Ovadia M Toxicon; 1994 Dec; 32(12):1689-95. PubMed ID: 7725339 [TBL] [Abstract][Full Text] [Related]
2. In vitro activity of BaH1, the main hemorrhagic toxin of Bothrops asper snake venom on bovine endothelial cells. Borkow G; Gutiérrez JM; Ovadia M Toxicon; 1995 Oct; 33(10):1387-91. PubMed ID: 8599191 [TBL] [Abstract][Full Text] [Related]
3. Cytotoxic activity of various snake venoms on melanoma, B16F10 and chondrosarcoma. Chaim-Matyas A; Ovadia M Life Sci; 1987 Apr; 40(16):1601-7. PubMed ID: 3561167 [TBL] [Abstract][Full Text] [Related]
4. Chromogenic proteinase substrates as possible tools in the characterization of Crotalidae and Viperidae snake venoms. Meier J; Stocker K; Svendsen LG; Brogli M Toxicon; 1985; 23(3):393-7. PubMed ID: 3895582 [TBL] [Abstract][Full Text] [Related]
5. Contributions of the snake venoms of Bothrops asper, Crotalus simus and Lachesis stenophrys to the paraspecificity of the Central American polyspecific antivenom (PoliVal-ICP). Solano G; Gómez A; Corrales G; Chacón D; Estrada R; León G Toxicon; 2018 Mar; 144():1-6. PubMed ID: 29407870 [TBL] [Abstract][Full Text] [Related]
6. Toxicity of South American snake venoms measured by an in vitro cell culture assay. Oliveira JC; de Oca HM; Duarte MM; Diniz CR; Fortes-Dias CL Toxicon; 2002 Mar; 40(3):321-5. PubMed ID: 11711131 [TBL] [Abstract][Full Text] [Related]
7. Cross reactivity of mono- and polyvalent antivenoms with Viperidae and Crotalidae snake venoms. Kornalík F; Táborská E Toxicon; 1989; 27(10):1135-42. PubMed ID: 2815109 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of the edema-inducing activity of snake venoms. Tan NH; Saifuddin MN Comp Biochem Physiol C Comp Pharmacol Toxicol; 1990; 97(2):293-6. PubMed ID: 1982873 [TBL] [Abstract][Full Text] [Related]
9. Biological and immunological properties of nerve growth factor from snake venoms. Lipps BV J Nat Toxins; 1998 Jun; 7(2):121-30. PubMed ID: 9678186 [TBL] [Abstract][Full Text] [Related]
10. Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Meier J; Theakston RD Toxicon; 1986; 24(4):395-401. PubMed ID: 3715904 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of Sendai virus by various snake venom. Borkow G; Ovadia M Life Sci; 1992; 51(16):1261-7. PubMed ID: 1328790 [TBL] [Abstract][Full Text] [Related]
14. Mast cells can enhance resistance to snake and honeybee venoms. Metz M; Piliponsky AM; Chen CC; Lammel V; Abrink M; Pejler G; Tsai M; Galli SJ Science; 2006 Jul; 313(5786):526-30. PubMed ID: 16873664 [TBL] [Abstract][Full Text] [Related]
15. Muscle extract of hedgehog, Erinaceus europaeus, inhibits hemorrhagic activity of snake venoms. Omori-Satoh T; Nagaoka Y; Mebs D Toxicon; 1994 Oct; 32(10):1279-81. PubMed ID: 7846699 [TBL] [Abstract][Full Text] [Related]
16. Comparative studies on venoms of the fer-de-lance (Bothrops atrox), carpet viper (Echis carinatus) and spitting cobra (Naja nigricollis) snakes at different ages. Meier J; Freyvogel TA Toxicon; 1980; 18(5-6):661-2. PubMed ID: 7222070 [No Abstract] [Full Text] [Related]
17. Differential action of medically important Indian BIG FOUR snake venoms on rodent blood coagulation. Hiremath V; Nanjaraj Urs AN; Joshi V; Suvilesh KN; Savitha MN; Urs Amog P; Rudresha GV; Yariswamy M; Vishwanath BS Toxicon; 2016 Feb; 110():19-26. PubMed ID: 26592458 [TBL] [Abstract][Full Text] [Related]
18. Differential action of proteases from Trimeresurus malabaricus, Naja naja and Daboia russellii venoms on hemostasis. Gowda CD; Nataraju A; Rajesh R; Dhananjaya BL; Sharath BK; Vishwanath BS Comp Biochem Physiol C Toxicol Pharmacol; 2006 Jul; 143(3):295-302. PubMed ID: 16627005 [TBL] [Abstract][Full Text] [Related]
19. Differential susceptibility of C2C12 myoblasts and myotubes to group II phospholipase A2 myotoxins from crotalid snake venoms. Angulo Y; Lomonte B Cell Biochem Funct; 2005; 23(5):307-13. PubMed ID: 15657942 [TBL] [Abstract][Full Text] [Related]
20. A survey of kininase, tyrosine esterase, kininogenase and arginine esterase activities in some snake venoms. al-Joufi AM; Bailey GS Comp Biochem Physiol Biochem Mol Biol; 1994 Jun; 108(2):221-4. PubMed ID: 8055188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]