These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 7725790)

  • 1. Respiratory inhibitors affect incorporation of glucose into Saccharomyces cerevisiae cells, but not the activity of glucose transport.
    Walsh MC; Smits HP; van Dam K
    Yeast; 1994 Dec; 10(12):1553-8. PubMed ID: 7725790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin signaling in the yeast Saccharomyces cerevisiae. 1. Stimulation of glucose metabolism and Snf1 kinase by human insulin.
    Müller G; Rouveyre N; Crecelius A; Bandlow W
    Biochemistry; 1998 Jun; 37(24):8683-95. PubMed ID: 9628730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-respiratory oxygen consumption pathways in anaerobically-grown Saccharomyces cerevisiae: evidence and partial characterization.
    Rosenfeld E; Beauvoit B; Rigoulet M; Salmon JM
    Yeast; 2002 Nov; 19(15):1299-321. PubMed ID: 12402241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity of single S. cerevisiae cells to 2-NBDglucose under changing substrate concentrations.
    Achilles J; Müller S; Bley T; Babel W
    Cytometry A; 2004 Sep; 61(1):88-98. PubMed ID: 15351993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux.
    Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L
    FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The low-affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion.
    Gamo FJ; Moreno E; Lagunas R
    Yeast; 1995 Nov; 11(14):1393-8. PubMed ID: 8585322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae.
    Sánchez NS; Calahorra M; González-Hernández JC; Peña A
    Yeast; 2006 Apr; 23(5):361-74. PubMed ID: 16598688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanide-resistant respiration in a respiration-deficient mutant of Saccharomyces cerevisae.
    Arrabaça JD; Loureito Dias MC
    Z Allg Mikrobiol; 1982; 22(7):437-42. PubMed ID: 6760567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-affinity glucose uptake in Saccharomyces cerevisiae is not dependent on the presence of glucose-phosphorylating enzymes.
    Smits HP; Smits GJ; Postma PW; Walsh MC; van Dam K
    Yeast; 1996 Apr; 12(5):439-47. PubMed ID: 8740417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of cyanide on diauxic oscillations in yeast.
    Hald BO; Smrcinova M; Sørensen PG
    FEBS J; 2012 Dec; 279(23):4410-20. PubMed ID: 23072639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae.
    Lee WJ; Kim MD; Ryu YW; Bisson LF; Seo JH
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):186-91. PubMed ID: 12382062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems.
    Kotliar N; Stella CA; Ramos EH; Mattoon JR
    Cell Mol Biol (Noisy-le-grand); 1994 Sep; 40(6):833-42. PubMed ID: 7812191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of aerobic respiration and dissimilatory perchlorate reduction using cyanide.
    Song Y; Logan BE
    FEMS Microbiol Lett; 2004 Oct; 239(2):229-34. PubMed ID: 15476970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon source-dependent regulation of cell growth by murine protein kinase C epsilon expression in Saccharomyces cerevisiae.
    Parissenti AM; Villeneuve D; Kirwan-Rhude A; Busch D
    J Cell Physiol; 1999 Feb; 178(2):216-26. PubMed ID: 10048586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of respiratory burst and uptake of dehydroascorbic acid in differentiated HL-60 cells.
    Laggner H; Goldenberg H
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):195-200. PubMed ID: 10620494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron toxicity in yeast.
    Wiśnicka R; Krzepiłko A; Wawryn J; Biliński T
    Acta Microbiol Pol; 1997; 46(4):339-47. PubMed ID: 9516981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmoregulatory alterations in taurine uptake by cultured human and bovine lens epithelial cells.
    Cammarata PR; Schafer G; Chen SW; Guo Z; Reeves RE
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):425-33. PubMed ID: 11818387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.
    Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S
    FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1.
    Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM
    Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.