BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 7726517)

  • 1. Tobramycin uptake in Escherichia coli membrane vesicles.
    Leviton IM; Fraimow HS; Carrasco N; Dougherty TJ; Miller MH
    Antimicrob Agents Chemother; 1995 Feb; 39(2):467-75. PubMed ID: 7726517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tobramycin uptake in Escherichia coli is driven by either electrical potential or ATP.
    Fraimow HS; Greenman JB; Leviton IM; Dougherty TJ; Miller MH
    J Bacteriol; 1991 May; 173(9):2800-8. PubMed ID: 2019557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin.
    Bryan LE; Kwan S
    Antimicrob Agents Chemother; 1983 Jun; 23(6):835-45. PubMed ID: 6351731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.
    Ramos S; Schuldiner S; Kaback HR
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1892-6. PubMed ID: 6961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electrochemical proton gradient in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Mar; 16(5):848-54. PubMed ID: 14664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes.
    Koronakis V; Hughes C; Koronakis E
    EMBO J; 1991 Nov; 10(11):3263-72. PubMed ID: 1915293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delata psi, delta pH, and Delta mu H+.
    Kaczorowski GJ; Robertson DE; Kaback HR
    Biochemistry; 1979 Aug; 18(17):3697-704. PubMed ID: 38837
    [No Abstract]   [Full Text] [Related]  

  • 8. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli.
    McMurry LM; Cullinane JC; Petrucci RE; Levy SB
    Antimicrob Agents Chemother; 1981 Sep; 20(3):307-13. PubMed ID: 7030198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the transport of potassium ions in the cyanobacterium Anabaena variabilis Kütz.
    Reed RH; Rowell P; Stewart WD
    Eur J Biochem; 1981 May; 116(2):323-30. PubMed ID: 6788551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport.
    Winkler E; Klingenberg M
    Eur J Biochem; 1992 Jul; 207(1):135-45. PubMed ID: 1378400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli.
    Reenstra WW; Patel L; Rottenberg H; Kaback HR
    Biochemistry; 1980 Jan; 19(1):1-9. PubMed ID: 6986161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potential and gentamicin uptake in Staphylococcus aureus.
    Mates SM; Eisenberg ES; Mandel LJ; Patel L; Kaback HR; Miller MH
    Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6693-7. PubMed ID: 6959147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux.
    Engel P; Krämer R; Unden G
    Eur J Biochem; 1994 Jun; 222(2):605-14. PubMed ID: 8020497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP.
    Yamane K; Ichihara S; Mizushima S
    J Biol Chem; 1987 Feb; 262(5):2358-62. PubMed ID: 3029075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CCCP Facilitates Aminoglycoside to Kill Late Stationary-Phase
    Li Z; Wu L; Huang Z; Lv B; Fu Y; Zhou L; Fu X
    ACS Infect Dis; 2023 Apr; 9(4):801-814. PubMed ID: 36961435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli.
    Kashiwagi K; Kobayashi H; Igarashi K
    J Bacteriol; 1986 Mar; 165(3):972-7. PubMed ID: 3005244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of electrochemical proton gradient formation by membrane vesicles from an obligately acidophilic bacterium.
    Guffanti AA; Mann M; Sherman TL; Krulwich TA
    J Bacteriol; 1984 Aug; 159(2):448-52. PubMed ID: 6746570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-Gluconate transport in Arthrobacter pyridinolis. Metabolic trapping of a protonated solute.
    Mandel KG; Krulwich TA
    Biochim Biophys Acta; 1979 Apr; 552(3):478-91. PubMed ID: 36144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles.
    Friedberg I; Kaback HR
    J Bacteriol; 1980 May; 142(2):651-8. PubMed ID: 7380805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.