These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7727373)

  • 61. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide.
    Länge S; Fuchs G
    Eur J Biochem; 1987 Feb; 163(1):147-54. PubMed ID: 3102234
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.
    Daniel SL; Hsu T; Dean SI; Drake HL
    J Bacteriol; 1990 Aug; 172(8):4464-71. PubMed ID: 2376565
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1995 Jun; 34(24):7879-88. PubMed ID: 7794899
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structural and functional insights into corrinoid iron-sulfur protein from human pathogen Clostridium difficile.
    Wei Y; Zhu X; Zhang S; Tan X
    J Inorg Biochem; 2017 May; 170():26-33. PubMed ID: 28214753
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pulse-chase studies of the synthesis of acetyl-CoA by carbon monoxide dehydrogenase/acetyl-CoA synthase: evidence for a random mechanism of methyl and carbonyl addition.
    Seravalli J; Ragsdale SW
    J Biol Chem; 2008 Mar; 283(13):8384-94. PubMed ID: 18203715
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum.
    Ragsdale SW; Wood HG; Antholine WE
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6811-4. PubMed ID: 2995986
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica.
    Naidu D; Ragsdale SW
    J Bacteriol; 2001 Jun; 183(11):3276-81. PubMed ID: 11344134
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Efficient expression and purification of methyltransferase in acetyl-coenzyme a synthesis pathway of the human pathogen Clostridium difficile.
    Zhu X; Gu X; Zhang S; Liu Y; Huang ZX; Tan X
    Protein Expr Purif; 2011 Jul; 78(1):86-93. PubMed ID: 21324365
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Allyl Aryl Ether Cleavage by
    Mi HTN; Chaiyasarn S; Eser BE; Tan SRS; Burapan S; Han J
    Microbiol Spectr; 2022 Oct; 10(5):e0330522. PubMed ID: 36197289
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enzymes involved in the anoxic utilization of phenyl methyl ethers by Desulfitobacterium hafniense DCB2 and Desulfitobacterium hafniense PCE-S.
    Kreher S; Schilhabel A; Diekert G
    Arch Microbiol; 2008 Oct; 190(4):489-95. PubMed ID: 18607569
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus.
    Mai X; Adams MW
    J Bacteriol; 1996 Oct; 178(20):5897-903. PubMed ID: 8830684
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6.
    Abe T; Masai E; Miyauchi K; Katayama Y; Fukuda M
    J Bacteriol; 2005 Mar; 187(6):2030-7. PubMed ID: 15743951
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pathways of methanol conversion in a thermophilic anaerobic (55 degrees C) sludge consortium.
    Paulo PL; Stams AJ; Field JA; Dijkema C; van Lier JB; Lettinga G
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):307-14. PubMed ID: 12856164
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila.
    Abbanat DR; Ferry JG
    J Bacteriol; 1990 Dec; 172(12):7145-50. PubMed ID: 2123865
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum.
    Diekert GB; Thauer RK
    J Bacteriol; 1978 Nov; 136(2):597-606. PubMed ID: 711675
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chemical modification of the functional arginine residues of carbon monoxide dehydrogenase from Clostridium thermoaceticum.
    Shanmugasundaram T; Kumar GK; Shenoy BC; Wood HG
    Biochemistry; 1989 Aug; 28(17):7112-6. PubMed ID: 2819052
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enzymatic Kraft lignin demethylation and fungal O-demethylases like vanillate-O-demethylase and syringate O-demethylase catalyzed catechol-Fe
    Venkatesagowda B
    J Microbiol Methods; 2018 Sep; 152():126-134. PubMed ID: 30076868
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Contribution of exogenous substrates to acetyl coenzyme A: measurement by 13C NMR under non-steady-state conditions.
    Malloy CR; Thompson JR; Jeffrey FM; Sherry AD
    Biochemistry; 1990 Jul; 29(29):6756-61. PubMed ID: 1975750
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Properties of the methylcobalamin:H4folate methyltransferase involved in chloromethane utilization by Methylobacterium sp. strain CM4.
    Studer A; Vuilleumier S; Leisinger T
    Eur J Biochem; 1999 Aug; 264(1):242-9. PubMed ID: 10447694
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Properties of enzymes from Clostridium thermoaceticum and Clostridium formicoaceticum.
    Ljungdahl LG; Sherod DW; Moore MR; Andreesen JR
    Experientia Suppl; 1976; 26():237-48. PubMed ID: 7468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.