BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 7727404)

  • 1. Role of the C-terminal tail of the GLUT1 glucose transporter in its expression and function in Xenopus laevis oocytes.
    Due AD; Qu ZC; Thomas JM; Buchs A; Powers AC; May JM
    Biochemistry; 1995 Apr; 34(16):5462-71. PubMed ID: 7727404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal mutations that alter the turnover number for 3-O-methylglucose transport by GLUT1 and GLUT4.
    Dauterive R; Laroux S; Bunn RC; Chaisson A; Sanson T; Reed BC
    J Biol Chem; 1996 May; 271(19):11414-21. PubMed ID: 8626697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "cysteineless" GLUT1 glucose transporter has normal function when expressed in Xenopus oocytes.
    Due AD; Cook JA; Fletcher SJ; Qu ZC; Powers AC; May JM
    Biochem Biophys Res Commun; 1995 Mar; 208(2):590-6. PubMed ID: 7695611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes.
    Nishimura H; Pallardo FV; Seidner GA; Vannucci S; Simpson IA; Birnbaum MJ
    J Biol Chem; 1993 Apr; 268(12):8514-20. PubMed ID: 8473295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization.
    Zottola RJ; Cloherty EK; Coderre PE; Hansen A; Hebert DN; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9734-47. PubMed ID: 7626644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes.
    Garcia JC; Strube M; Leingang K; Keller K; Mueckler MM
    J Biol Chem; 1992 Apr; 267(11):7770-6. PubMed ID: 1560011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete structural domains determine differential endoplasmic reticulum to Golgi transit times for glucose transporter isoforms.
    Hresko RC; Murata H; Marshall BA; Mueckler M
    J Biol Chem; 1994 Dec; 269(51):32110-9. PubMed ID: 7798206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity.
    Liu Q; Vera JC; Peng H; Golde DW
    Biochemistry; 2001 Jul; 40(26):7874-81. PubMed ID: 11425315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of tryptophan-388 of GLUT1 glucose transporter in glucose-transport activity and photoaffinity-labelling with forskolin.
    Katagiri H; Asano T; Ishihara H; Lin JL; Inukai K; Shanahan MF; Tsukuda K; Kikuchi M; Yazaki Y; Oka Y
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):861-7. PubMed ID: 8489512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal.
    Corvera S; Chawla A; Chakrabarti R; Joly M; Buxton J; Czech MP
    J Cell Biol; 1994 Aug; 126(4):979-89. PubMed ID: 7519625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of a functional glucose transporter in Xenopus oocytes.
    Gould GW; Lienhard GE
    Biochemistry; 1989 Nov; 28(24):9447-52. PubMed ID: 2692709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid.
    Rumsey SC; Kwon O; Xu GW; Burant CF; Simpson I; Levine M
    J Biol Chem; 1997 Jul; 272(30):18982-9. PubMed ID: 9228080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domains that confer intracellular sequestration of the Glut4 glucose transporter in Xenopus oocytes.
    Marshall BA; Murata H; Hresko RC; Mueckler M
    J Biol Chem; 1993 Dec; 268(35):26193-9. PubMed ID: 8253739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2002 Feb; 277(5):3498-503. PubMed ID: 11713254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From triple cysteine mutants to the cysteine-less glucose transporter GLUT1: a functional analysis.
    Wellner M; Monden I; Keller K
    FEBS Lett; 1995 Aug; 370(1-2):19-22. PubMed ID: 7649297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity.
    Arbuckle MI; Kane S; Porter LM; Seatter MJ; Gould GW
    Biochemistry; 1996 Dec; 35(51):16519-27. PubMed ID: 8987985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamine 161 of Glut1 glucose transporter is critical for transport activity and exofacial ligand binding.
    Mueckler M; Weng W; Kruse M
    J Biol Chem; 1994 Aug; 269(32):20533-8. PubMed ID: 8051152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxy terminus of glucose transporter 3 contains an apical membrane targeting domain.
    Inukai K; Shewan AM; Pascoe WS; Katayama S; James DE; Oka Y
    Mol Endocrinol; 2004 Feb; 18(2):339-49. PubMed ID: 14605095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.