BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 7727435)

  • 1. Structure of zinc-substituted cytochrome c: nuclear magnetic resonance and optical spectroscopic studies.
    Anni H; Vanderkooi JM; Mayne L
    Biochemistry; 1995 May; 34(17):5744-53. PubMed ID: 7727435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural studies of imidazole-cytochrome c: resonance assignments and structural comparison with cytochrome c.
    Liu G; Shao W; Huang X; Wu H; Tang W
    Biochim Biophys Acta; 1996 Nov; 1277(1-2):61-82. PubMed ID: 8950372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobalt-cytochrome c. II. Magnetic resonance spectra and conformational transitions.
    Dickinson LC; Chien JC
    Biochemistry; 1975 Aug; 14(16):3534-42. PubMed ID: 240381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential assignment of proton resonances in the NMR spectrum of Zn-substituted alpha chains from human hemoglobin. Ligand-induced tertiary changes in the heme pocket.
    Martineau L; Craescu CT
    Eur J Biochem; 1993 Jun; 214(2):383-93. PubMed ID: 8513788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D-NMR studies of the effects of axial substitution on two helices in horse cytochrome c.
    Shao W; Liu G; Huang X; Wu H; Tang W
    Biochim Biophys Acta; 1996 Jun; 1295(1):44-50. PubMed ID: 8679672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native and denatured Zn cytochrome c studied by fluorescence line narrowing spectroscopy.
    Logovinsky V; Kaposi AD; Vanderkooi JM
    Biochim Biophys Acta; 1993 Feb; 1161(2-3):149-60. PubMed ID: 8381668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of horse heart ferricytochrome c and detection of redox-related structural changes by high-resolution 1H NMR.
    Qi PX; Beckman RA; Wand AJ
    Biochemistry; 1996 Sep; 35(38):12275-86. PubMed ID: 8823161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1H NMR studies of azide binding to cytochrome c.
    Ma D; Lu J; Tang W
    Biochim Biophys Acta; 1998 Apr; 1384(1):32-42. PubMed ID: 9602041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c.
    Feng Y; Roder H; Englander SW
    Biochemistry; 1990 Apr; 29(14):3494-504. PubMed ID: 2162193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of heme axial ligands in the conformational stability of the native and molten globule states of horse cytochrome c.
    Hamada D; Kuroda Y; Kataoka M; Aimoto S; Yoshimura T; Goto Y
    J Mol Biol; 1996 Feb; 256(1):172-86. PubMed ID: 8609608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assignment of proton resonances, identification of secondary structural elements, and analysis of backbone chemical shifts for the C102T variant of yeast iso-1-cytochrome c and horse cytochrome c.
    Gao Y; Boyd J; Williams RJ; Pielak GJ
    Biochemistry; 1990 Jul; 29(30):6994-7003. PubMed ID: 2171638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zn(II) coordination domain mutants of T4 gene 32 protein.
    Giedroc DP; Giu HW; Khan R; King GC; Chen K
    Biochemistry; 1992 Jan; 31(3):765-74. PubMed ID: 1731933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of zinc-substituted cytochrome c by circular dichroism and resonance Raman spectroscopic methods.
    Ye S; Shen C; Cotton TM; Kostić NM
    J Inorg Biochem; 1997 Feb; 65(3):219-26. PubMed ID: 9025273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b(5).
    Liang ZX; Nocek JM; Huang K; Hayes RT; Kurnikov IV; Beratan DN; Hoffman BM
    J Am Chem Soc; 2002 Jun; 124(24):6849-59. PubMed ID: 12059205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of mutant Met100Lys of cytochrome c-550 from Thiobacillus versutus with lysine-histidine heme ligation.
    Ubbink M; Campos AP; Teixeira M; Hunt NI; Hill HA; Canters GW
    Biochemistry; 1994 Aug; 33(33):10051-9. PubMed ID: 8060974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of axial methionine fluxion in Hydrogenobacter thermophilus Gln64Asn cytochrome c552.
    Wen X; Bren KL
    Biochemistry; 2005 Apr; 44(13):5225-33. PubMed ID: 15794659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential NMR resonance assignment and secondary structure of ferrocytochrome c553 from Desulfovibrio vulgaris Hildenborough.
    Marion D; Guerlesquin F
    Biochemistry; 1992 Sep; 31(35):8171-9. PubMed ID: 1326323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field and conformational effects of cytochrome c and solvent on cytochrome c peroxidase studied by high-resolution fluorescence spectroscopy.
    Anni H; Vanderkooi JM; Sharp KA; Yonetani T; Hopkins SC; Herenyi L; Fidy J
    Biochemistry; 1994 Mar; 33(12):3475-86. PubMed ID: 8142344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallocytochromes c: characterization of electronic absorption and emission spectra of Sn4+ and Zn2+ cytochromes c.
    Vanderkooi JM; Adar F; Erecińska M
    Eur J Biochem; 1976 May; 64(2):381-7. PubMed ID: 179813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron paramagnetic resonance of the excited triplet state of metal-free and metal-substituted cytochrome c.
    Angiolillo PJ; Vanderkooi JM
    Biophys J; 1995 Jun; 68(6):2505-18. PubMed ID: 7647253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.