BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 7727438)

  • 1. Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies.
    Cardamone M; Puri NK; Brandon MR
    Biochemistry; 1995 May; 34(17):5773-94. PubMed ID: 7727438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectroscopic and equilibrium binding analysis of cationic detergent-protein interactions using soluble and insoluble recombinant porcine growth hormone.
    Cardamone M; Puri NK; Sawyer WH; Capon RJ; Brandon MR
    Biochim Biophys Acta; 1994 May; 1206(1):71-82. PubMed ID: 8186252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid denaturation of recombinant porcine growth hormone: formation and self-association of folding intermediates.
    Parkinson EJ; Morris MB; Bastiras S
    Biochemistry; 2000 Oct; 39(40):12345-54. PubMed ID: 11015214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative refolding of recombinant prochymosin.
    Wei C; Tang B; Zhang Y; Yang K
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):345-51. PubMed ID: 10229691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubilization and refolding of bacterial inclusion body proteins.
    Singh SM; Panda AK
    J Biosci Bioeng; 2005 Apr; 99(4):303-10. PubMed ID: 16233795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An immunological approach to the study of protein conformational heterogeneity: its application to growth hormone.
    Benveniste R; Frohman LA
    Endocrinology; 1978 Jan; 102(1):198-209. PubMed ID: 84749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium denaturation of human growth hormone and its cysteine-modified forms.
    Brems DN; Brown PL; Becker GW
    J Biol Chem; 1990 Apr; 265(10):5504-11. PubMed ID: 2180927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the refolding efficiency for proinsulin aspart inclusion body with optimized buffer compositions.
    Chen Y; Wang Q; Zhang C; Li X; Gao Q; Dong C; Liu Y; Su Z
    Protein Expr Purif; 2016 Jun; 122():1-7. PubMed ID: 26826314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refolding of urea-denatured ovalbumin that comprises non-native disulfide isomers.
    Onda M; Tatsumi E; Takahashi N; Hirose M
    J Biochem; 1997 Jul; 122(1):83-9. PubMed ID: 9276674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A relationship between the starting secondary structure of recombinant porcine growth hormone solubilised from inclusion bodies and the yield of native (monomeric) protein after in vitro refolding.
    Puri NK; Cardamone M
    FEBS Lett; 1992 Jul; 305(3):177-80. PubMed ID: 1299610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubilization of growth hormone and other recombinant proteins from Escherichia coli inclusion bodies by using a cationic surfactant.
    Puri NK; Crivelli E; Cardamone M; Fiddes R; Bertolini J; Ninham B; Brandon MR
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):871-9. PubMed ID: 1497625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correct disulfide pairing and efficient refolding of detergent-solubilized single-chain Fv proteins from bacterial inclusion bodies.
    Kurucz I; Titus JA; Jost CR; Segal DM
    Mol Immunol; 1995 Dec; 32(17-18):1443-52. PubMed ID: 8643113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refolding process of ovalbumin from urea-denatured state. Evidence for the involvement of nonproductive side chain interactions in an early intermediate.
    Onda M; Tatsumi E; Takahashi N; Hirose M
    J Biol Chem; 1997 Feb; 272(7):3973-9. PubMed ID: 9020102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Techno-economic evaluation of an inclusion body solubilization and recombinant protein refolding process.
    Freydell EJ; van der Wielen LA; Eppink MH; Ottens M
    Biotechnol Prog; 2011; 27(5):1315-28. PubMed ID: 21674819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refolding and purification of unprocessed porcine myostatin expressed in Escherichia coli.
    Jin HJ; Dunn MA; Borthakur D; Kim YS
    Protein Expr Purif; 2004 May; 35(1):1-10. PubMed ID: 15039059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori.
    Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I
    Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubilization of recombinant ovine growth hormone with retention of native-like secondary structure and its refolding from the inclusion bodies of Escherichia coli.
    Khan RH; Rao KB; Eshwari AN; Totey SM; Panda AK
    Biotechnol Prog; 1998; 14(5):722-8. PubMed ID: 9758661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Putative disulfide-forming pathway of porcine insulin precursor during its refolding in vitro.
    Qiao ZS; Guo ZY; Feng YM
    Biochemistry; 2001 Mar; 40(9):2662-8. PubMed ID: 11258877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an oxidative refolding intermediate of recombinant consensus interferon from inclusion bodies and design of a two-stage strategy to promote correct disulfide-bond formation.
    Liu YD; Zhang GF; Li JJ; Chen J; Wang YJ; Ding H; Su ZG
    Biotechnol Appl Biochem; 2007 Dec; 48(Pt 4):189-98. PubMed ID: 17523923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refolding and oxidation of recombinant human stem cell factor produced in Escherichia coli.
    Jones MD; Narhi LO; Chang WC; Lu HS
    J Biol Chem; 1996 May; 271(19):11301-8. PubMed ID: 8626682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.