These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 7727455)

  • 1. Thermodynamic studies of the core histones: ionic strength and pH dependence of H2A-H2B dimer stability.
    Karantza V; Baxevanis AD; Freire E; Moudrianakis EN
    Biochemistry; 1995 May; 34(17):5988-96. PubMed ID: 7727455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic studies of the core histones: pH and ionic strength effects on the stability of the (H3-H4)/(H3-H4)2 system.
    Karantza V; Freire E; Moudrianakis EN
    Biochemistry; 1996 Feb; 35(6):2037-46. PubMed ID: 8639689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic studies of the core histones: stability of the octamer subunits is not altered by removal of their terminal domains.
    Karantza V; Freire E; Moudrianakis EN
    Biochemistry; 2001 Oct; 40(43):13114-23. PubMed ID: 11669650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of salts on the stability of the H2A-H2B histone dimer.
    Gloss LM; Placek BJ
    Biochemistry; 2002 Dec; 41(50):14951-9. PubMed ID: 12475244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic studies on histone-DNA interactions. I. The interaction of histone (H2A, H2B) dimer with DNA: DNA sequence dependence.
    Oohara I; Wada A
    J Mol Biol; 1987 Jul; 196(2):389-97. PubMed ID: 3656450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform.
    Placek BJ; Harrison LN; Villers BM; Gloss LM
    Protein Sci; 2005 Feb; 14(2):514-22. PubMed ID: 15632282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium folding of the core histones: the H3-H4 tetramer is less stable than the H2A-H2B dimer.
    Banks DD; Gloss LM
    Biochemistry; 2003 Jun; 42(22):6827-39. PubMed ID: 12779337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolded structure and reactivity of nucleosome core DNA-histone H2A,H2B complexes in solution as studied by synchrotron radiation X-ray scattering.
    Samsó M; Daban JR
    Biochemistry; 1993 May; 32(17):4609-14. PubMed ID: 8485137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The N-terminal tails of the H2A-H2B histones affect dimer structure and stability.
    Placek BJ; Gloss LM
    Biochemistry; 2002 Dec; 41(50):14960-8. PubMed ID: 12475245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of the stability of the H2A and H2B histone monomers.
    Stump MR; Gloss LM
    J Mol Biol; 2008 Dec; 384(5):1369-83. PubMed ID: 18976667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic stability of archaeal histones.
    Li WT; Grayling RA; Sandman K; Edmondson S; Shriver JW; Reeve JN
    Biochemistry; 1998 Jul; 37(30):10563-72. PubMed ID: 9692945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pH-dependent interaction between histones H2A and H2B involving secondary and tertiary folding.
    Moss T; Cary PD; Abercrombie BD; Crane-Robinson C; Bradbury EM
    Eur J Biochem; 1976 Dec; 71(2):337-50. PubMed ID: 12962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal unfolding of the archaeal DNA and RNA binding protein Ssh10.
    Wu X; Oppermann M; Berndt KD; Bergman T; Jörnvall H; Knapp S; Oppermann U
    Biochem Biophys Res Commun; 2008 Sep; 373(4):482-7. PubMed ID: 18571501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation.
    Biswas H; Chattopadhyaya R
    PLoS One; 2014; 9(8):e103579. PubMed ID: 25140525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential scanning calorimetry of thermal unfolding of the methionine repressor protein (MetJ) from Escherichia coli.
    Johnson CM; Cooper A; Stockley PG
    Biochemistry; 1992 Oct; 31(40):9717-24. PubMed ID: 1390748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor.
    Johnson CR; Morin PE; Arrowsmith CH; Freire E
    Biochemistry; 1995 Apr; 34(16):5309-16. PubMed ID: 7727392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of the histone dimer H2A-H2B studied by spectroscopy.
    Khrapunov SN; Dragan AI; Protas AF; Berdyshev GD
    Biochim Biophys Acta; 1984 May; 787(1):97-104. PubMed ID: 6722177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis of the structural stability of the shiga toxin B-subunit.
    Pina DG; Gómez J; Villar E; Johannes L; Shnyrov VL
    Biochemistry; 2003 Aug; 42(31):9498-506. PubMed ID: 12899637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reversible two-state unfolding of a monocot mannose-binding lectin from garlic bulbs reveals the dominant role of the dimeric interface in its stabilization.
    Bachhawat K; Kapoor M; Dam TK; Surolia A
    Biochemistry; 2001 Jun; 40(24):7291-300. PubMed ID: 11401577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-state kinetic folding mechanism of the H2A/H2B histone heterodimer: the N-terminal tails affect the transition state between a dimeric intermediate and the native dimer.
    Placek BJ; Gloss LM
    J Mol Biol; 2005 Jan; 345(4):827-36. PubMed ID: 15588829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.