BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7728534)

  • 1. Glycine receptors in the caudal pontine reticular formation: are they important for the inhibition of the acoustic startle response?
    Koch M; Friauf E
    Brain Res; 1995 Feb; 671(1):63-72. PubMed ID: 7728534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle.
    Geis HR; Schmid S
    Neurosci Res; 2011 Oct; 71(2):114-23. PubMed ID: 21726589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit?
    Lingenhöhl K; Friauf E
    J Neurosci; 1994 Mar; 14(3 Pt 1):1176-94. PubMed ID: 8120618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatostatin in the pontine reticular formation modulates fear potentiation of the acoustic startle response: an anatomical, electrophysiological, and behavioral study.
    Fendt M; Koch M; Schnitzler HU
    J Neurosci; 1996 May; 16(9):3097-103. PubMed ID: 8622139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Group III metabotropic glutamate receptors inhibit startle-mediating giant neurons in the caudal pontine reticular nucleus but do not mediate synaptic depression/short-term habituation of startle.
    Schmid S; Brown T; Simons-Weidenmaier N; Weber M; Fendt M
    J Neurosci; 2010 Aug; 30(31):10422-30. PubMed ID: 20685984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of glycine receptors in the lateral habenula rescues anxiety- and depression-like behaviors associated with alcohol withdrawal and reduces alcohol intake in rats.
    Li W; Zuo W; Wu W; Zuo QK; Fu R; Wu L; Zhang H; Ndukwe M; Ye JH
    Neuropharmacology; 2019 Oct; 157():107688. PubMed ID: 31254534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat.
    Koch M; Kungel M; Herbert H
    Exp Brain Res; 1993; 97(1):71-82. PubMed ID: 8131833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neurobiology of startle.
    Koch M
    Prog Neurobiol; 1999 Oct; 59(2):107-28. PubMed ID: 10463792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network.
    Curtin PC; Preuss T
    Front Neural Circuits; 2015; 9():12. PubMed ID: 25852486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The acoustic startle response in rats--circuits mediating evocation, inhibition and potentiation.
    Koch M; Schnitzler HU
    Behav Brain Res; 1997 Dec; 89(1-2):35-49. PubMed ID: 9475613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substance P is involved in the sensitization of the acoustic startle response by footshocks in rats.
    Krase W; Koch M; Schnitzler HU
    Behav Brain Res; 1994 Jul; 63(1):81-8. PubMed ID: 7524534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the strychnine-insensitive glycine binding site in the nucleus accumbens and anterodorsal striatum in sensorimotor gating: a behavioral and microdialysis study.
    Kretschmer BD; Koch M
    Psychopharmacology (Berl); 1997 Mar; 130(2):131-8. PubMed ID: 9106910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/basal nucleus of Meynert to the pontine reticular formation.
    Koch M; Ebert U
    Exp Brain Res; 1993; 93(2):231-41. PubMed ID: 8491264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic plasticity in the acoustic startle pathway: the neuronal basis for short-term habituation?
    Weber M; Schnitzler HU; Schmid S
    Eur J Neurosci; 2002 Oct; 16(7):1325-32. PubMed ID: 12405993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caudal pontine reticular formation of C57BL/6J mice: responses to startle stimuli, inhibition by tones, and plasticity.
    Carlson S; Willott JF
    J Neurophysiol; 1998 May; 79(5):2603-14. PubMed ID: 9582232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex.
    Hormigo S; López DE; Cardoso A; Zapata G; Sepúlveda J; Castellano O
    Brain Struct Funct; 2018 Jul; 223(6):2733-2751. PubMed ID: 29574585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strychnine increases acoustic startle amplitude but does not alter short-term or long-term habituation.
    Kehne JH; Davis M
    Behav Neurosci; 1984 Dec; 98(6):955-68. PubMed ID: 6095880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic modulation of the acoustic startle response in the caudal pontine reticular nucleus of the rat.
    Fendt M; Koch M
    Eur J Pharmacol; 1999 Apr; 370(2):101-7. PubMed ID: 10323257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of the acoustic startle response following neurotoxic lesions of the caudal pontine reticular formation: possible role of giant neurons.
    Koch M; Lingenhöhl K; Pilz PK
    Neuroscience; 1992 Aug; 49(3):617-25. PubMed ID: 1386915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Startle suppression after mild traumatic brain injury is associated with an increase in pro-inflammatory cytokines, reactive gliosis and neuronal loss in the caudal pontine reticular nucleus.
    Sinha SP; Avcu P; Spiegler KM; Komaravolu S; Kim K; Cominski T; Servatius RJ; Pang KCH
    Brain Behav Immun; 2017 Mar; 61():353-364. PubMed ID: 28089558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.