These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Heat-shock induction of RNA polymerase sigma-32 synthesis in Escherichia coli: transcriptional control and a multiple promoter system. Fujita N; Ishihama A Mol Gen Genet; 1987 Nov; 210(1):10-5. PubMed ID: 3323832 [TBL] [Abstract][Full Text] [Related]
8. Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Nagai H; Yuzawa H; Yura T Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10515-9. PubMed ID: 1961716 [TBL] [Abstract][Full Text] [Related]
9. Functional equivalence of Escherichia coli sigma E and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. Yu H; Schurr MJ; Deretic V J Bacteriol; 1995 Jun; 177(11):3259-68. PubMed ID: 7768826 [TBL] [Abstract][Full Text] [Related]
10. Cloning and analysis of the gene (rpoDA) for the principal sigma factor of Pseudomonas aeruginosa. Tanaka K; Takahashi H Biochim Biophys Acta; 1991 May; 1089(1):113-9. PubMed ID: 1902749 [TBL] [Abstract][Full Text] [Related]
11. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus. Reisenauer A; Mohr CD; Shapiro L J Bacteriol; 1996 Apr; 178(7):1919-27. PubMed ID: 8606166 [TBL] [Abstract][Full Text] [Related]
12. The Bradyrhizobium japonicum rpoH1 gene encoding a sigma 32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes. Narberhaus F; Weiglhofer W; Fischer HM; Hennecke H J Bacteriol; 1996 Sep; 178(18):5337-46. PubMed ID: 8808920 [TBL] [Abstract][Full Text] [Related]
13. Regulation of the heat shock response in E coli: involvement of positive and negative cis-acting elements in translation control of sigma 32 synthesis. Nagai H; Yuzawa H; Yura T Biochimie; 1991 Dec; 73(12):1473-9. PubMed ID: 1725259 [TBL] [Abstract][Full Text] [Related]
14. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Schurr MJ; Deretic V Mol Microbiol; 1997 Apr; 24(2):411-20. PubMed ID: 9159526 [TBL] [Abstract][Full Text] [Related]
15. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32). Kitagawa M; Wada C; Yoshioka S; Yura T J Bacteriol; 1991 Jul; 173(14):4247-53. PubMed ID: 1906060 [TBL] [Abstract][Full Text] [Related]
16. Physical mapping of several heat-shock genes in Pseudomonas aeruginosa and the cloning of the mopA (GroEL) gene. Farinha MA; Mockett R; Went CJ; Jardine S; Naczynski LM; Kropinski AM Can J Microbiol; 1996 Apr; 42(4):326-34. PubMed ID: 8857035 [TBL] [Abstract][Full Text] [Related]
17. Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. Schurr MJ; Yu H; Boucher JC; Hibler NS; Deretic V J Bacteriol; 1995 Oct; 177(19):5670-9. PubMed ID: 7559357 [TBL] [Abstract][Full Text] [Related]
18. The bacteriophage T4 gene mrh whose product inhibits late T4 gene expression in an Escherichia coli rpoH (sigma 32) mutant. Frazier MW; Mosig G Gene; 1990 Mar; 88(1):7-14. PubMed ID: 1692800 [TBL] [Abstract][Full Text] [Related]