These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 7728898)
1. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol. Bolton JL; Comeau E; Vukomanovic V Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898 [TBL] [Abstract][Full Text] [Related]
2. o-Methoxy-4-alkylphenols that form quinone methides of intermediate reactivity are the most toxic in rat liver slices. Thompson DC; Perera K; Krol ES; Bolton JL Chem Res Toxicol; 1995; 8(3):323-7. PubMed ID: 7578916 [TBL] [Abstract][Full Text] [Related]
3. The enzymatic formation and chemical reactivity of quinone methides correlate with alkylphenol-induced toxicity in rat hepatocytes. Bolton JL; Valerio LG; Thompson JA Chem Res Toxicol; 1992; 5(6):816-22. PubMed ID: 1489934 [TBL] [Abstract][Full Text] [Related]
4. The influence of the p-alkyl substituent on the isomerization of o-quinones to p-quinone methides: potential bioactivation mechanism for catechols. Iverson SL; Hu LQ; Vukomanovic V; Bolton JL Chem Res Toxicol; 1995 Jun; 8(4):537-44. PubMed ID: 7548733 [TBL] [Abstract][Full Text] [Related]
5. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes. Iverson SL; Shen L; Anlar N; Bolton JL Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054 [TBL] [Abstract][Full Text] [Related]
6. Evidence that 4-allyl-o-quinones spontaneously rearrange to their more electrophilic quinone methides: potential bioactivation mechanism for the hepatocarcinogen safrole. Bolton JL; Acay NM; Vukomanovic V Chem Res Toxicol; 1994; 7(3):443-50. PubMed ID: 8075378 [TBL] [Abstract][Full Text] [Related]
7. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: studies utilizing amino acid and peptide models. Bolton JL; Turnipseed SB; Thompson JA Chem Biol Interact; 1997 Nov; 107(3):185-200. PubMed ID: 9448752 [TBL] [Abstract][Full Text] [Related]
8. p-Quinone methides are the major decomposition products of catechol estrogen o-quinones. Bolton JL; Shen L Carcinogenesis; 1996 May; 17(5):925-9. PubMed ID: 8640939 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation. Krol ES; Bolton JL Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692 [TBL] [Abstract][Full Text] [Related]
10. Skin sensitization to eugenol and isoeugenol in mice: possible metabolic pathways involving ortho-quinone and quinone methide intermediates. Bertrand F; Basketter DA; Roberts DW; Lepoittevin JP Chem Res Toxicol; 1997 Mar; 10(3):335-43. PubMed ID: 9084914 [TBL] [Abstract][Full Text] [Related]
11. Lung toxicity and tumor promotion by hydroxylated derivatives of 2,6-di-tert-butyl-4-methylphenol (BHT) and 2-tert-butyl-4-methyl-6-iso-propylphenol: correlation with quinone methide reactivity. Kupfer R; Dwyer-Nield LD; Malkinson AM; Thompson JA Chem Res Toxicol; 2002 Aug; 15(8):1106-12. PubMed ID: 12184795 [TBL] [Abstract][Full Text] [Related]
12. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides. Fan PW; Zhang F; Bolton JL Chem Res Toxicol; 2000 Jan; 13(1):45-52. PubMed ID: 10649966 [TBL] [Abstract][Full Text] [Related]
13. Formation of glutathione conjugates during oxidation of eugenol by microsomal fractions of rat liver and lung. Thompson D; Constantin-Teodosiu D; Egestad B; Mickos H; Moldéus P Biochem Pharmacol; 1990 May; 39(10):1587-95. PubMed ID: 2337416 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of isomerization of 4-propyl-o-quinone to its tautomeric p-quinone methide. Bolton JL; Wu HM; Hu LQ Chem Res Toxicol; 1996; 9(1):109-113. PubMed ID: 8924578 [TBL] [Abstract][Full Text] [Related]
15. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol. Lewis MA; Yoerg DG; Bolton JL; Thompson JA Chem Res Toxicol; 1996 Dec; 9(8):1368-74. PubMed ID: 8951242 [TBL] [Abstract][Full Text] [Related]
16. Oxidation of eugenol to form DNA adducts and 8-hydroxy-2'-deoxyguanosine: role of quinone methide derivative in DNA adduct formation. Bodell WJ; Ye Q; Pathak DN; Pongracz K Carcinogenesis; 1998 Mar; 19(3):437-43. PubMed ID: 9525278 [TBL] [Abstract][Full Text] [Related]
17. Biological and toxicological consequences of quinone methide formation. Thompson DC; Thompson JA; Sugumaran M; Moldéus P Chem Biol Interact; 1993 Feb; 86(2):129-62. PubMed ID: 8448810 [TBL] [Abstract][Full Text] [Related]
18. Role of quinone methide in the in vitro toxicity of the skin tumor promoter butylated hydroxytoluene hydroperoxide. Guyton KZ; Thompson JA; Kensler TW Chem Res Toxicol; 1993; 6(5):731-8. PubMed ID: 8292753 [TBL] [Abstract][Full Text] [Related]
19. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells. Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899 [TBL] [Abstract][Full Text] [Related]
20. Oxidation of butylated hydroxytoluene to toxic metabolites. Factors influencing hydroxylation and quinone methide formation by hepatic and pulmonary microsomes. Bolton JL; Thompson JA Drug Metab Dispos; 1991; 19(2):467-72. PubMed ID: 1676656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]