These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7729442)

  • 1. Effect of a low-carbohydrate diet on plasma and sweat ammonia concentrations during prolonged nonexhausting exercise.
    Czarnowski D; Langfort J; Pilis W; Górski J
    Eur J Appl Physiol Occup Physiol; 1995; 70(1):70-4. PubMed ID: 7729442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sweat ammonia excretion during submaximal cycling exercise.
    Czarnowski D; Górski J
    J Appl Physiol (1985); 1991 Jan; 70(1):371-4. PubMed ID: 2010396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diet composition and the performance of high-intensity exercise.
    Maughan RJ; Greenhaff PL; Leiper JB; Ball D; Lambert CP; Gleeson M
    J Sports Sci; 1997 Jun; 15(3):265-75. PubMed ID: 9232552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of dietary manipulation on plasma ammonia accumulation during incremental exercise in man.
    Greenhaff PL; Leiper JB; Ball D; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):338-44. PubMed ID: 1773809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of glycogen availability on power output and the metabolic response to repeated bouts of maximal, isokinetic exercise in man.
    Casey A; Short AH; Curtis S; Greenhaff PL
    Eur J Appl Physiol Occup Physiol; 1996; 72(3):249-55. PubMed ID: 8820894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma amino acid and ammonia responses to altered dietary intakes prior to prolonged exercise in humans.
    MacLean DA; Spriet LL; Graham TE
    Can J Physiol Pharmacol; 1992 Apr; 70(4):420-7. PubMed ID: 1498711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of alterations in dietary carbohydrate intake on the performance of high-intensity exercise in trained individuals.
    Pitsiladis YP; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):433-42. PubMed ID: 10208253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The (in)dependency of blood and sweat sodium, chloride, potassium, ammonia, lactate and glucose concentrations during submaximal exercise.
    Klous L; de Ruiter CJ; Scherrer S; Gerrett N; Daanen HAM
    Eur J Appl Physiol; 2021 Mar; 121(3):803-816. PubMed ID: 33355715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate, protein, and fat metabolism during exercise after oral carnitine supplementation in humans.
    Broad EM; Maughan RJ; Galloway SD
    Int J Sport Nutr Exerc Metab; 2008 Dec; 18(6):567-84. PubMed ID: 19164828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans.
    Helge JW; Watt PW; Richter EA; Rennie MJ; Kiens B
    J Physiol; 2001 Dec; 537(Pt 3):1009-20. PubMed ID: 11744773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate and ammonia concentration in blood and sweat during incremental cycle ergometer exercise.
    Ament W; Huizenga JR; Mook GA; Gips CH; Verkerke GJ
    Int J Sports Med; 1997 Jan; 18(1):35-9. PubMed ID: 9059903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-intensity exercise and muscle glycogen availability in humans.
    Balsom PD; Gaitanos GC; Söderlund K; Ekblom B
    Acta Physiol Scand; 1999 Apr; 165(4):337-45. PubMed ID: 10350228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of plasma glutamine, free tryptophan and branched-chain amino acids to prolonged exercise after a regime designed to reduce muscle glycogen.
    Zanker CL; Swaine IL; Castell LM; Newsholme EA
    Eur J Appl Physiol Occup Physiol; 1997; 75(6):543-8. PubMed ID: 9202952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fat balance in obese subjects: role of glycogen stores.
    Schrauwen P; Lichtenbelt WD; Saris WH; Westerterp KR
    Am J Physiol; 1998 Jun; 274(6):E1027-33. PubMed ID: 9611152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle glycogen storage after prolonged exercise: effect of the frequency of carbohydrate feedings.
    Burke LM; Collier GR; Davis PG; Fricker PA; Sanigorski AJ; Hargreaves M
    Am J Clin Nutr; 1996 Jul; 64(1):115-9. PubMed ID: 8669406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise-induced sweat nitrogen excretion: evaluation of a regional collection method using gauze pads.
    Colombani P; Späti S; Spleiss C; Frey-Rindova P; Wenk C
    Z Ernahrungswiss; 1997 Sep; 36(3):237-43. PubMed ID: 9399426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma and muscle amino acid and ammonia responses during prolonged exercise in humans.
    MacLean DA; Spriet LL; Hultman E; Graham TE
    J Appl Physiol (1985); 1991 May; 70(5):2095-103. PubMed ID: 1864791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans.
    Snow RJ; Carey MF; Stathis CG; Febbraio MA; Hargreaves M
    J Appl Physiol (1985); 2000 May; 88(5):1576-80. PubMed ID: 10797115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of different diets and of insulin on the hormonal response to prolonged exercise.
    Galbo H; Holst JJ; Christensen NJ
    Acta Physiol Scand; 1979 Sep; 107(1):19-32. PubMed ID: 525365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of dietary manipulation on blood acid-base status and the performance of high intensity exercise.
    Greenhaff PL; Gleeson M; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1987; 56(3):331-7. PubMed ID: 3569242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.