These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 7729763)
61. Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. Geissler JF; Harwood CS; Gibson J J Bacteriol; 1988 Apr; 170(4):1709-14. PubMed ID: 3350788 [TBL] [Abstract][Full Text] [Related]
62. Application of PCR-DGGE to analyse the yeast population dynamics in slurry reactors during degradation of polycyclic aromatic hydrocarbons in weathered oil. El-Latif Hesham A; Khan S; Liu X; Zhang Y; Wang Z; Yang M Yeast; 2006 Sep; 23(12):879-87. PubMed ID: 17001616 [TBL] [Abstract][Full Text] [Related]
63. Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. A literature review and an experimental approach. Middelhoven WJ Antonie Van Leeuwenhoek; 1993 Feb; 63(2):125-44. PubMed ID: 8259830 [TBL] [Abstract][Full Text] [Related]
64. Evidence for anaerobic syntrophic benzoate degradation threshold and isolation of the syntrophic benzoate degrader. Hopkins BT; McInerney MJ; Warikoo V Appl Environ Microbiol; 1995 Feb; 61(2):526-30. PubMed ID: 7574591 [TBL] [Abstract][Full Text] [Related]
65. Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. Harwood CS; Gibson J J Bacteriol; 1986 Feb; 165(2):504-9. PubMed ID: 3944059 [TBL] [Abstract][Full Text] [Related]
66. Biosorption of copper by yeasts. Junghans K; Straube G Biol Met; 1991; 4(4):233-7. PubMed ID: 1777357 [TBL] [Abstract][Full Text] [Related]
67. Effects of various acids and salts on growth and aflatoxin production by Aspergillus flavus NRRL 3145. Uraih N; Chipley JR Microbios; 1976; 17(67):51-9. PubMed ID: 19682 [TBL] [Abstract][Full Text] [Related]
68. Identification and role of ionizing functional groups at the active center of Rhodotorula gracilis D-amino acid oxidase. Pollegioni L; Harris CM; Molla G; Pilone MS; Ghisla S FEBS Lett; 2001 Nov; 507(3):323-6. PubMed ID: 11696364 [TBL] [Abstract][Full Text] [Related]
69. Biodegradation of xylene and butyl acetate using an aqueous-silicon oil two-phase system. Gardin H; Lebeault JM; Pauss A Biodegradation; 1999 Jun; 10(3):193-200. PubMed ID: 10492887 [TBL] [Abstract][Full Text] [Related]
70. Synthetic hydrocarbons obtained by means of coal processing as a raw material for the microbiological industry. III. Assimilation of individual hydrocarbons from kogasin by selected yeast strains of the genus Candida. Wojtatowicz M; Kuźniarz M; Sobieszczański J; Rutkowski M Acta Microbiol Pol; 1981; 30(2):165-71. PubMed ID: 6168177 [TBL] [Abstract][Full Text] [Related]
71. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Polburee P; Yongmanitchai W; Lertwattanasakul N; Ohashi T; Fujiyama K; Limtong S Fungal Biol; 2015 Dec; 119(12):1194-1204. PubMed ID: 26615742 [TBL] [Abstract][Full Text] [Related]
72. Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast. Eudes A; Mouille M; Robinson DS; Benites VT; Wang G; Roux L; Tsai YL; Baidoo EE; Chiu TY; Heazlewood JL; Scheller HV; Mukhopadhyay A; Keasling JD; Deutsch S; Loqué D Microb Cell Fact; 2016 Nov; 15(1):198. PubMed ID: 27871334 [TBL] [Abstract][Full Text] [Related]
73. Modulation of chromium(VI) toxicity by organic and inorganic sulfur species in yeasts from industrial wastes. Pepi M; Baldi F Biometals; 1992; 5(3):179-85. PubMed ID: 1421967 [TBL] [Abstract][Full Text] [Related]
74. Strain differentiation of pathogenic yeasts by the killer system. Morace G; Archibusacci C; Sestito M; Polonelli L Mycopathologia; 1984 Feb; 84(2-3):81-5. PubMed ID: 6371541 [TBL] [Abstract][Full Text] [Related]
75. Loss of Tdn catabolic genes by deletion from and curing of plasmid pTDN1 in Pseudomonas putida: rate and mode of loss are substrate and pH dependent. Saint CP; Venables WA J Gen Microbiol; 1990 Apr; 136(4):627-36. PubMed ID: 2168928 [TBL] [Abstract][Full Text] [Related]
76. Prediction of Listeria spp. growth as affected by various levels of chemicals, pH, temperature and storage time in a model broth. Razavilar V; Genigeorgis C Int J Food Microbiol; 1998 Apr; 40(3):149-57. PubMed ID: 9620122 [TBL] [Abstract][Full Text] [Related]
77. [Studies on the yeasts and yeast-like fungi degrading trinitrotoluene]. Yin P; Bai F; Zhou P Wei Sheng Wu Xue Bao; 1998 Aug; 38(4):295-9. PubMed ID: 12549418 [TBL] [Abstract][Full Text] [Related]
78. Screening of yeasts for growth on crude glycerol and optimization of biomass production. Taccari M; Canonico L; Comitini F; Mannazzu I; Ciani M Bioresour Technol; 2012 Apr; 110():488-95. PubMed ID: 22342043 [TBL] [Abstract][Full Text] [Related]
79. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. Wei Y; Siewers V; Nielsen J Appl Microbiol Biotechnol; 2017 May; 101(9):3577-3585. PubMed ID: 28168314 [TBL] [Abstract][Full Text] [Related]
80. Influence of modified atmosphere and preservatives on the growth of Zygosaccharomyces rouxii isolated from dried fruits. el Halouat A; Debevere JM Int J Food Microbiol; 1996 Dec; 33(2-3):219-29. PubMed ID: 8930707 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]