These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 7730236)
1. Profiles of outer membrane proteins and lipopolysaccharide of Pseudomonas aeruginosa grown in the presence of sub-MICs of macrolide antibiotics and their relation to enhanced serum sensitivity. Tateda K; Ishii Y; Hirakata Y; Matsumoto T; Ohno A; Yamaguchi K J Antimicrob Chemother; 1994 Dec; 34(6):931-42. PubMed ID: 7730236 [TBL] [Abstract][Full Text] [Related]
2. Potential of macrolide antibiotics to inhibit protein synthesis of Pseudomonas aeruginosa: suppression of virulence factors and stress response. Tateda K; Ishii Y; Matsumoto T; Kobayashi T; Miyazaki S; Yamaguchi K J Infect Chemother; 2000 Mar; 6(1):1-7. PubMed ID: 11810524 [TBL] [Abstract][Full Text] [Related]
3. Effects of sub-MICs of erythromycin and other macrolide antibiotics on serum sensitivity of Pseudomonas aeruginosa. Tateda K; Hirakata Y; Furuya N; Ohno A; Yamaguchi K Antimicrob Agents Chemother; 1993 Apr; 37(4):675-80. PubMed ID: 8494362 [TBL] [Abstract][Full Text] [Related]
5. Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. Tateda K; Ishii Y; Matsumoto T; Furuya N; Nagashima M; Matsunaga T; Ohno A; Miyazaki S; Yamaguchi K Antimicrob Agents Chemother; 1996 Oct; 40(10):2271-5. PubMed ID: 8891128 [TBL] [Abstract][Full Text] [Related]
6. Effects of sub-inhibitory concentrations of antibiotics on surface expression of ferripyochelin-binding protein in Pseudomonas aeruginosa. LeVatte MA; Sokol PA J Antimicrob Chemother; 1989 Dec; 24(6):881-95. PubMed ID: 2559913 [TBL] [Abstract][Full Text] [Related]
7. Outer membrane proteins and lipopolysaccharide changes after exposure of Pseudomonas aeruginosa to antibacterial drugs. Giordano A; Magni A; Trancassini M; Cipriani P New Microbiol; 1993 Jul; 16(3):281-6. PubMed ID: 8366824 [TBL] [Abstract][Full Text] [Related]
8. [Effect of macrolide antibiotics on human serum-bactericidal sensitivity of Pseudomonas aeruginosa S-6]. Tateda K; Furuya N; Hirakata Y; Ohno A; Kaneko Y; Miyazaki S; Tsuji A; Yamaguchi K; Goto S Kansenshogaku Zasshi; 1991 Oct; 65(10):1337-43. PubMed ID: 1838760 [TBL] [Abstract][Full Text] [Related]
9. Increased susceptibility of Pseudomonas aeruginosa to macrolides and ketolides in eukaryotic cell culture media and biological fluids due to decreased expression of oprM and increased outer-membrane permeability. Buyck JM; Plésiat P; Traore H; Vanderbist F; Tulkens PM; Van Bambeke F Clin Infect Dis; 2012 Aug; 55(4):534-42. PubMed ID: 22573850 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. Molinari G; Guzmán CA; Pesce A; Schito GC J Antimicrob Chemother; 1993 May; 31(5):681-8. PubMed ID: 8392997 [TBL] [Abstract][Full Text] [Related]
11. Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. Loughlin MF; Jones MV; Lambert PA J Antimicrob Chemother; 2002 Apr; 49(4):631-9. PubMed ID: 11909837 [TBL] [Abstract][Full Text] [Related]
12. Antipneumococcal activities of two novel macrolides, GW 773546 and GW 708408, compared with those of erythromycin, azithromycin, clarithromycin, clindamycin, and telithromycin. Matic V; Kosowska K; Bozdogan B; Kelly LM; Smith K; Ednie LM; Lin G; Credito KL; Clark CL; McGhee P; Pankuch GA; Jacobs MR; Appelbaum PC Antimicrob Agents Chemother; 2004 Nov; 48(11):4103-12. PubMed ID: 15504828 [TBL] [Abstract][Full Text] [Related]
13. [Effect of azithromycin on human serum sensitivity of Pseudomonas aeruginosa]. Tateda K; Yamaguchi K; Furuya N; Hirakata Y; Ohno A; Goto S Kansenshogaku Zasshi; 1992 Sep; 66(9):1236-42. PubMed ID: 1331267 [TBL] [Abstract][Full Text] [Related]
14. Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. Mizukane R; Hirakata Y; Kaku M; Ishii Y; Furuya N; Ishida K; Koga H; Kohno S; Yamaguchi K Antimicrob Agents Chemother; 1994 Mar; 38(3):528-33. PubMed ID: 8203850 [TBL] [Abstract][Full Text] [Related]
15. Emergence of a 23S rRNA mutation in Mycoplasma hominis associated with a loss of the intrinsic resistance to erythromycin and azithromycin. Pereyre S; Renaudin H; Charron A; Bébéar C; Bébéar CM J Antimicrob Chemother; 2006 Apr; 57(4):753-6. PubMed ID: 16464889 [TBL] [Abstract][Full Text] [Related]
16. Outer membrane alterations in Pseudomonas aeruginosa after five-day exposure to quinolones and carbapenems. Cipriani P; Giordano A; Magni A; Papa F; Filadoro F Drugs Exp Clin Res; 1995; 21(4):139-44. PubMed ID: 8529526 [TBL] [Abstract][Full Text] [Related]
17. Detection of drug-resistance mechanism of Pseudomonas aeruginosa developing from a sensitive strain to a persister during carbapenem treatment. Shen JL; Fang YP Genet Mol Res; 2015 Jun; 14(2):6723-32. PubMed ID: 26125881 [TBL] [Abstract][Full Text] [Related]
18. Adaptation of Pseudomonas aeruginosa to 2,2'-methylenebis (4-chlorophenol). Brözel VS; Cloete TE J Appl Bacteriol; 1993 Jan; 74(1):94-9. PubMed ID: 8420922 [TBL] [Abstract][Full Text] [Related]
19. Resistance of Pseudomonas aeruginosa to isothiazolone. Brözel VS; Cloete TE J Appl Bacteriol; 1994 Jun; 76(6):576-82. PubMed ID: 8027006 [TBL] [Abstract][Full Text] [Related]
20. Analysis of amikacin-resistant Pseudomonas aeruginosa developing in patients receiving amikacin. Maloney J; Rimland D; Stephens DS; Terry P; Whitney AM Arch Intern Med; 1989 Mar; 149(3):630-4. PubMed ID: 2493230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]