These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 7730236)
21. Synergistic bactericidal interaction of josamycin with human neutrophils in vitro. Labro MT; el Benna J J Antimicrob Chemother; 1990 Oct; 26(4):515-24. PubMed ID: 2123851 [TBL] [Abstract][Full Text] [Related]
22. Effects of continuous exposure to ciprofloxacin on the outer membrane of P. aeruginosa. Magni A; Giordano A; Papa F; de Vito D; Cipriani P New Microbiol; 1994 Oct; 17(4):307-12. PubMed ID: 7861986 [TBL] [Abstract][Full Text] [Related]
23. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. Siriyong T; Srimanote P; Chusri S; Yingyongnarongkul BE; Suaisom C; Tipmanee V; Voravuthikunchai SP BMC Complement Altern Med; 2017 Aug; 17(1):405. PubMed ID: 28806947 [TBL] [Abstract][Full Text] [Related]
24. [The effect of subinhibitory concentrations of norfloxacin, erythromycin and roxithromycin on Pseudomonas aeruginosa virulence factors]. Hostacká A Epidemiol Mikrobiol Imunol; 1995 Sep; 44(3):115-7. PubMed ID: 7489133 [TBL] [Abstract][Full Text] [Related]
25. Decreases of the susceptibility to low molecular weight beta-lactam antibiotics in imipenem-resistant Pseudomonas aeruginosa mutants: role of outer membrane protein D2 in their diffusion. Gotoh N; Nishino T J Antimicrob Chemother; 1990 Feb; 25(2):191-8. PubMed ID: 2109748 [TBL] [Abstract][Full Text] [Related]
26. Studies on molecular characterizations of the outer membrane proteins, lipids profile, and exopolysaccharides of antibiotic resistant strain Pseudomonas aeruginosa. Yehia HM; Hassanein WA; Ibraheim SM Biomed Res Int; 2015; 2015():651464. PubMed ID: 25710016 [TBL] [Abstract][Full Text] [Related]
27. The interaction between Pseudomonas aeruginosa cells and cationic PC:Chol:DOTAP liposomal vesicles versus outer-membrane structure and envelope properties of bacterial cell. Drulis-Kawa Z; Dorotkiewicz-Jach A; Gubernator J; Gula G; Bocer T; Doroszkiewicz W Int J Pharm; 2009 Feb; 367(1-2):211-9. PubMed ID: 18952159 [TBL] [Abstract][Full Text] [Related]
28. Mode of action of the protein, SP127, which enhances the activity of macrolide antibiotics against Pseudomonas aeruginosa. Kikuchi M; Nakao Y J Antibiot (Tokyo); 1977 Mar; 30(3):215-20. PubMed ID: 405356 [TBL] [Abstract][Full Text] [Related]
29. New antimicrobial peptide-antibiotic combination strategy for Pseudomonas aeruginosa inactivation. Han W; Wei Z; Camesano TA Biointerphases; 2022 Aug; 17(4):041002. PubMed ID: 35922283 [TBL] [Abstract][Full Text] [Related]
30. Effect of Sub-MICs of Macrolides on the Sensitivity of Pseudomonas aeruginosa to Nitrosative Stress: Effectiveness against P. aeruginosa with and without Multidrug Resistance. Shimizu T; Miyoshi-Akiyama T; Ogura K; Murata S; Ishige S; Kai K; Mitsutsuka K; Tomita H; Tanimoto K; Matsumoto A Antimicrob Agents Chemother; 2020 Sep; 64(10):. PubMed ID: 32718959 [TBL] [Abstract][Full Text] [Related]
31. Trends in the Minimum Inhibitory Concentrations of Erythromycin, Clarithromycin, Azithromycin, Ciprofloxacin, and Trimethoprim/Sulfamethoxazole for Strains of Bordetella pertussis isolated in the Czech Republic in 1967-2015. Jakubů V; Zavadilová J; Fabiánová K; Urbášková P Cent Eur J Public Health; 2017 Dec; 25(4):282-286. PubMed ID: 29346850 [TBL] [Abstract][Full Text] [Related]
32. Postantibiotic suppression effect of macrolides on the expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis. Kawamura-Sato K; Iinuma Y; Hasegawa T; Yamashino T; Ohta M J Infect Chemother; 2001 Mar; 7(1):51-4. PubMed ID: 11406758 [TBL] [Abstract][Full Text] [Related]
33. Influence of macrolide antibiotics on promotion of resistance in the oral flora of children. Kastner U; Guggenbichler JP Infection; 2001 Oct; 29(5):251-6. PubMed ID: 11688901 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics. Werneburg M; Zerbe K; Juhas M; Bigler L; Stalder U; Kaech A; Ziegler U; Obrecht D; Eberl L; Robinson JA Chembiochem; 2012 Aug; 13(12):1767-75. PubMed ID: 22807320 [TBL] [Abstract][Full Text] [Related]
35. Lipopolysaccharide alterations responsible for combined quinolone and beta-lactam resistance in Pseudomonas aeruginosa. Leying HJ; Büscher KH; Cullmann W; Then RL Chemotherapy; 1992; 38(2):82-91. PubMed ID: 1591950 [TBL] [Abstract][Full Text] [Related]
36. Effect of outer-membrane permeabilizers on the activity of antibiotics and plant extracts against Pseudomonas aeruginosa. Guha A; Choudhury A; Unni BG; Roy MK Folia Microbiol (Praha); 2002; 47(4):379-84. PubMed ID: 12422514 [TBL] [Abstract][Full Text] [Related]
37. Antibiotic stress induces a large amount of outer membrane protein in Pseudomonas aeruginosa. Nakajima A; Hoshikawa M; Nakae T FEMS Microbiol Lett; 1998 Aug; 165(2):261-5. PubMed ID: 9742697 [TBL] [Abstract][Full Text] [Related]
38. Serum IgG response to Burkholderia cepacia outer membrane antigens in cystic fibrosis: assessment of cross-reactivity with Pseudomonas aeruginosa. Lacy DE; Smith AW; Stableforth DE; Smith G; Weller PH; Brown MR FEMS Immunol Med Microbiol; 1995 Feb; 10(3-4):253-61. PubMed ID: 7539670 [TBL] [Abstract][Full Text] [Related]
39. Postantibiotic effect of norfloxacin and its influence on profiles of outer membrane proteins of Pseudomonas aeruginosa. Hostacká A; Karelová E Pharmazie; 1997 Mar; 52(3):238-9. PubMed ID: 9109171 [TBL] [Abstract][Full Text] [Related]
40. Effect of outer membrane permeabilisation on intrinsic resistance to low triclosan levels in Pseudomonas aeruginosa. Champlin FR; Ellison ML; Bullard JW; Conrad RS Int J Antimicrob Agents; 2005 Aug; 26(2):159-164. PubMed ID: 16040235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]