These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 7730350)
1. L-aspartate association contributes to rate limitation and induction of the T-->R transition in Escherichia coli aspartate transcarbamoylase. Equilibrium exchanges and kinetic isotope effects with a Vmax-enhanced mutant, Asp-236-->Ala. Wedler FC; Ley BW; Lee BH; O'Leary MH; Kantrowitz ER J Biol Chem; 1995 Apr; 270(17):9725-33. PubMed ID: 7730350 [TBL] [Abstract][Full Text] [Related]
2. Domain closure in the catalytic chains of Escherichia coli aspartate transcarbamoylase influences the kinetic mechanism. Lee BH; Ley BW; Kantrowitz ER; O'Leary MH; Wedler FC J Biol Chem; 1995 Jun; 270(26):15620-7. PubMed ID: 7797560 [TBL] [Abstract][Full Text] [Related]
3. Site-specific mutation of Tyr240----Phe in the catalytic chain of Escherichia coli aspartate transcarbamylase. Consequences for kinetic mechanism. Hsuanyu Y; Wedler FC; Kantrowitz ER; Middleton SA J Biol Chem; 1989 Oct; 264(29):17259-65. PubMed ID: 2677001 [TBL] [Abstract][Full Text] [Related]
4. Effectors of Escherichia coli aspartate transcarbamoylase differentially perturb aspartate binding rather than the T-R transition. Hsuanyu YC; Wedler FC J Biol Chem; 1988 Mar; 263(9):4172-81. PubMed ID: 3279030 [TBL] [Abstract][Full Text] [Related]
5. Regulatory behavior of Escherichia coli aspartate transcarbamylase altered by site-specific mutation of Tyr240----Phe in the catalytic chain. Wedler FC; Hsuanyu YC; Kantrowitz ER; Middleton SA J Biol Chem; 1989 Oct; 264(29):17266-74. PubMed ID: 2677002 [TBL] [Abstract][Full Text] [Related]
6. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase. Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014 [TBL] [Abstract][Full Text] [Related]
7. Function of threonine-55 in the carbamoyl phosphate binding site of Escherichia coli aspartate transcarbamoylase. Xu W; Kantrowitz ER Biochemistry; 1989 Dec; 28(26):9937-43. PubMed ID: 2515892 [TBL] [Abstract][Full Text] [Related]
8. Importance of a conserved residue, aspartate-162, for the function of Escherichia coli aspartate transcarbamoylase. Newton CJ; Stevens RC; Kantrowitz ER Biochemistry; 1992 Mar; 31(11):3026-32. PubMed ID: 1550826 [TBL] [Abstract][Full Text] [Related]
10. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition. Stieglitz KA; Pastra-Landis SC; Xia J; Tsuruta H; Kantrowitz ER J Mol Biol; 2005 Jun; 349(2):413-23. PubMed ID: 15890205 [TBL] [Abstract][Full Text] [Related]
11. Importance of domain closure for homotropic cooperativity in Escherichia coli aspartate transcarbamylase. Newton CJ; Kantrowitz ER Biochemistry; 1990 Feb; 29(6):1444-51. PubMed ID: 2185840 [TBL] [Abstract][Full Text] [Related]
12. Threonine 82 in the regulatory chain is important for nucleotide affinity and for the allosteric stabilization of Escherichia coli aspartate transcarbamoylase. Williams MK; Kantrowitz ER Biochim Biophys Acta; 1998 Dec; 1429(1):249-58. PubMed ID: 9920401 [TBL] [Abstract][Full Text] [Related]
13. Glu-50 in the catalytic chain of Escherichia coli aspartate transcarbamoylase plays a crucial role in the stability of the R quaternary structure. Tauc P; Keiser RT; Kantrowitz ER; Vachette P Protein Sci; 1994 Nov; 3(11):1998-2004. PubMed ID: 7703847 [TBL] [Abstract][Full Text] [Related]
14. Kinetic consequences of site-specific mutation of Glu-239----Gln in E. coli aspartate transcarbamylase: comparison with catalytic subunits and Phe-240 mutant enzyme. Hsuanyu Y; Wedler FC; Middleton SA; Kantrowitz ER Biochim Biophys Acta; 1989 Mar; 995(1):54-8. PubMed ID: 2647154 [TBL] [Abstract][Full Text] [Related]
15. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer. Zhou BB; Waldrop GL; Lum L; Schachman HK Protein Sci; 1994 Jun; 3(6):967-74. PubMed ID: 8069226 [TBL] [Abstract][Full Text] [Related]
16. A cis-proline to alanine mutant of E. coli aspartate transcarbamoylase: kinetic studies and three-dimensional crystal structures. Jin L; Stec B; Kantrowitz ER Biochemistry; 2000 Jul; 39(27):8058-66. PubMed ID: 10891088 [TBL] [Abstract][Full Text] [Related]
17. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase. Middleton SA; Stebbins JW; Kantrowitz ER Biochemistry; 1989 Feb; 28(4):1617-26. PubMed ID: 2655696 [TBL] [Abstract][Full Text] [Related]
18. Function of serine-171 in domain closure, cooperativity, and catalysis in Escherichia coli aspartate transcarbamoylase. Dembowski NJ; Newton CJ; Kantrowitz ER Biochemistry; 1990 Apr; 29(15):3716-23. PubMed ID: 2111165 [TBL] [Abstract][Full Text] [Related]
19. Site-specific substitutions of the Tyr-165 residue in the catalytic chain of aspartate transcarbamoylase promotes a T-state preference in the holoenzyme. Wales ME; Hoover TA; Wild JR J Biol Chem; 1988 May; 263(13):6109-14. PubMed ID: 3283120 [TBL] [Abstract][Full Text] [Related]
20. 13C isotope effects as a probe of the kinetic mechanism and allosteric properties of Escherichia coli aspartate transcarbamylase. Parmentier LE; O'Leary MH; Schachman HK; Cleland WW Biochemistry; 1992 Jul; 31(28):6570-6. PubMed ID: 1633168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]