These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7730601)

  • 1. Maximum acceptable frequencies for females performing a drilling task in different wrist postures.
    Davis PJ; Fernandez JE
    J Hum Ergol (Tokyo); 1994 Dec; 23(2):81-92. PubMed ID: 7730601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Psychophysical frequency and sustained exertion at varying wrist postures for a drilling task.
    Marley RJ; Fernandez JE
    Ergonomics; 1995 Feb; 38(2):303-25. PubMed ID: 7895737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Psychophysical studies of repetitive wrist flexion and extension.
    Snook SH; Vaillancourt DR; Ciriello VM; Webster BS
    Ergonomics; 1995 Jul; 38(7):1488-507. PubMed ID: 7635136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ulnar deviation of the wrist combined with flexion/extension on the maximum voluntary contraction of grip.
    Haque S; Khan AA
    J Hum Ergol (Tokyo); 2009 Jun; 38(1):1-9. PubMed ID: 20034313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analytical method for characterizing repetitive motion and postural stress using spectral analysis.
    Radwin RG; Lin ML
    Ergonomics; 1993 Apr; 36(4):379-89. PubMed ID: 8472686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a frequency-weighted filter for continuous biomechanical stress in repetitive wrist flexion tasks against a load.
    Lin ML; Radwin RG
    Ergonomics; 1998 Apr; 41(4):476-84. PubMed ID: 9557588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wrist postures in the general population of computer users during a computer task.
    Donoghue MF; O'Reilly DS; Walsh MT
    Appl Ergon; 2013 Jan; 44(1):42-7. PubMed ID: 22607838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agreement between a frequency-weighted filter for continuous biomechanical measurements of repetitive wrist flexion against a load and published psychophysical data.
    Lin ML; Radwin RG
    Ergonomics; 1998 Apr; 41(4):459-75. PubMed ID: 9557587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A laboratory study to determine the effects of universal and rotating ultrasonic inserts on wrist movement and scaling time efficiency of dental hygienists.
    Hawn CC; Tolle SL; Darby M; Walker M
    Int J Dent Hyg; 2006 Feb; 4(1):15-23. PubMed ID: 16451435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wrist circumduction reduced by finger constraints.
    Gehrmann SV; Kaufmann RA; Li ZM
    J Hand Surg Am; 2008 Oct; 33(8):1287-92. PubMed ID: 18929190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of combined wrist deviation and forearm rotation on discomfort score.
    Khan AA; O'Sullivan L; Gallwey TJ
    Ergonomics; 2009 Mar; 52(3):345-61. PubMed ID: 18937090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrist motions in industry.
    Marras WS; Schoenmarklin RW
    Ergonomics; 1993 Apr; 36(4):341-51. PubMed ID: 8472684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wrist discomfort levels for combined movements at constant force and repetition rate.
    Carey EJ; Gallwey TJ
    Ergonomics; 2005 Feb; 48(2):171-86. PubMed ID: 15764315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum acceptable forces for repetitive ulnar deviation of the wrist.
    Snook SH; Vaillancourt DR; Ciriello VM; Webster BS
    Am Ind Hyg Assoc J; 1997 Jul; 58(7):509-17. PubMed ID: 9208467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of three different models to represent the wrist during wheelchair propulsion.
    Shimada SD; Cooper RA; Boninger ML; Koontz AM; Corfman TA
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):274-82. PubMed ID: 11561663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marker placement to describe the wrist movements during activities of daily living in cyclical tasks.
    Murgia A; Kyberd PJ; Chappell PH; Light CM
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):248-54. PubMed ID: 15003339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wrist and forearm postures and motions during typing.
    Serina ER; Tal R; Rempel D
    Ergonomics; 1999 Jul; 42(7):938-51. PubMed ID: 10424183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of right wrist posture during simulated colonoscopy: an application of kinematic analysis to the study of endoscopic maneuvers.
    Mohankumar D; Garner H; Ruff K; Ramirez FC; Fleischer D; Wu Q; Santello M
    Gastrointest Endosc; 2014 Mar; 79(3):480-9. PubMed ID: 24439784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do flexion/extension postures affect the in vivo passive lumbar spine response to applied axial twist moments?
    Drake JD; Callaghan JP
    Clin Biomech (Bristol, Avon); 2008 Jun; 23(5):510-9. PubMed ID: 18234402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.