These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 7731048)
1. The relationship between phosphorylation potential and redox state in the isolated working rabbit heart. Laughlin MR; Heineman FW J Mol Cell Cardiol; 1994 Dec; 26(12):1525-36. PubMed ID: 7731048 [TBL] [Abstract][Full Text] [Related]
2. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306 [TBL] [Abstract][Full Text] [Related]
4. Cytosolic redox potential and phosphate transport in the proximal tubule of the rabbit. A study in the isolated perfused tubules. Yanagawa N; Nagami GT; Kurokawa K Miner Electrolyte Metab; 1985; 11(1):57-61. PubMed ID: 3974539 [TBL] [Abstract][Full Text] [Related]
5. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Bünger R; Mallet RT; Hartman DA Eur J Biochem; 1989 Mar; 180(1):221-33. PubMed ID: 2707262 [TBL] [Abstract][Full Text] [Related]
6. Calcium-linked adjustment of myocardial metabolism to changing mechanical demands in the isolated rat heart. Rubányi G; Kovách AG Acta Physiol Acad Sci Hung; 1980; 55(4):335-43. PubMed ID: 7468250 [TBL] [Abstract][Full Text] [Related]
7. [The significance of arterial redox potential measurement by Vincent's method in evaluating the hemorrhagic shock state of rabbits]. Taniguchi S Masui; 1993 Mar; 42(3):387-93. PubMed ID: 8468781 [TBL] [Abstract][Full Text] [Related]
9. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria. Territo PR; French SA; Balaban RS Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984 [TBL] [Abstract][Full Text] [Related]
10. Pyridine nucleotides and phosphorylation potential of rabbit corneal epithelium and endothelium. Masters BR; Ghosh AK; Wilson J; Matschinsky FM Invest Ophthalmol Vis Sci; 1989 May; 30(5):861-68. PubMed ID: 2722442 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energetics. Mallet RT; Sun J Cardiovasc Res; 1999 Apr; 42(1):149-61. PubMed ID: 10435006 [TBL] [Abstract][Full Text] [Related]
13. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Påhlman IL; Gustafsson L; Rigoulet M; Larsson C Yeast; 2001 May; 18(7):611-20. PubMed ID: 11329172 [TBL] [Abstract][Full Text] [Related]
14. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase. Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973 [TBL] [Abstract][Full Text] [Related]
15. The action of quercetin on the mitochondrial NADH to NAD(+) ratio in the isolated perfused rat liver. Buss GD; Constantin J; de Lima LC; Teodoro GR; Comar JF; Ishii-Iwamoto EL; Bracht A Planta Med; 2005 Dec; 71(12):1118-22. PubMed ID: 16395647 [TBL] [Abstract][Full Text] [Related]