BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 7731048)

  • 21. [Effect of experimental myocardial infarct on the rate of NADH and 3-hydroxybutyrate oxidation in heart mitochondria].
    Dzheia PP; Toleikis AI; Prashkiavichius AK
    Vopr Med Khim; 1980; 26(6):731-5. PubMed ID: 7456403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of redox potential on protein degradation in perfused rat heart.
    Chua BH; Kleinhans BJ
    Am J Physiol; 1985 Jun; 248(6 Pt 1):E726-31. PubMed ID: 3890558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; Vary TC; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H453-60. PubMed ID: 8368348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytosolic free calcium, NAD/NADH redox state and hemodynamic changes in the cat cortex during severe hypoglycemia.
    Uematsu D; Greenberg JH; Reivich M; Karp A
    J Cereb Blood Flow Metab; 1989 Apr; 9(2):149-55. PubMed ID: 2921289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial transporter responsiveness and metabolic flux homeostasis in postischemic hearts.
    O'Donnell JM; White LT; Lewandowski ED
    Am J Physiol; 1999 Sep; 277(3):H866-73. PubMed ID: 10484405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages.
    Mintz S; Robin ED
    J Clin Invest; 1971 Jun; 50(6):1181-6. PubMed ID: 4325308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism of hyperpolarized
    Chen W; Sharma G; Jiang W; Maptue NR; Malloy CR; Sherry AD; Khemtong C
    NMR Biomed; 2019 Jun; 32(6):e4091. PubMed ID: 30968985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-Polarized [1-
    Sharma G; Wen X; Maptue NR; Hever T; Malloy CR; Sherry AD; Khemtong C
    ACS Sens; 2021 Nov; 6(11):3967-3977. PubMed ID: 34761912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simulation study on the constancy of cardiac energy metabolites during workload transition.
    Saito R; Takeuchi A; Himeno Y; Inagaki N; Matsuoka S
    J Physiol; 2016 Dec; 594(23):6929-6945. PubMed ID: 27530892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recruitment of NADH shuttling in pressure-overloaded and hypertrophic rat hearts.
    Lewandowski ED; O'donnell JM; Scholz TD; Sorokina N; Buttrick PM
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1880-6. PubMed ID: 17229809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soluble adenylyl cyclase regulates the cytosolic NADH/NAD
    Chang JC; Go S; Gilglioni EH; Duijst S; Panneman DM; Rodenburg RJ; Li HL; Huang HL; Levin LR; Buck J; Verhoeven AJ; Oude Elferink RPJ
    Biochim Biophys Acta Bioenerg; 2021 Apr; 1862(4):148367. PubMed ID: 33412125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of experimental myocardial infarct on the succinate oxidation rate and succinate dehydrogenase activity in the heart mitochondria].
    Dzheia PP; Toleĭkis AI; Prashkiavichius AK
    Vopr Med Khim; 1980; 26(5):591-4. PubMed ID: 7423870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition by (aminooxy)acetate of the malate-aspartate cycle in the isolated working guinea pig heart.
    Bünger R; Glanert S; Sommer O; Gerlach E
    Hoppe Seylers Z Physiol Chem; 1980; 361(6):907-14. PubMed ID: 7399410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.
    Lee CF; Chavez JD; Garcia-Menendez L; Choi Y; Roe ND; Chiao YA; Edgar JS; Goo YA; Goodlett DR; Bruce JE; Tian R
    Circulation; 2016 Sep; 134(12):883-94. PubMed ID: 27489254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Limited transfer of cytosolic NADH into mitochondria at high cardiac workload.
    O'Donnell JM; Kudej RK; LaNoue KF; Vatner SF; Lewandowski ED
    Am J Physiol Heart Circ Physiol; 2004 Jun; 286(6):H2237-42. PubMed ID: 14751856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorimetric characterisation of metabolic activity of ex vivo perfused pig hearts.
    Pfeifer L; Gruenwald I; Welker A; Stahn RM; Stein K; Rex A
    Biomed Tech (Berl); 2007 Apr; 52(2):193-9. PubMed ID: 17408379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo effects of lipopolysaccharide on hepatic free-NAD(P)(+)-linked redox states and cytosolic phosphorylation potential in 48-hour-fasted rats.
    Gitomer WL; Miller BC; Cottam GL
    Metabolism; 1995 Sep; 44(9):1170-4. PubMed ID: 7666791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial function in normal and hypoxic states of the myocardium.
    Williamson JR; Rich TL
    Adv Myocardiol; 1983; 4():271-85. PubMed ID: 6304829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate-aspartate translocase in the isolated perfused rat heart.
    Kauppinen RA; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1983 Dec; 725(3):425-33. PubMed ID: 6652078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetically encoded biosensors for evaluating NAD
    Hu Q; Wu D; Walker M; Wang P; Tian R; Wang W
    Cell Rep Methods; 2021 Nov; 1(7):. PubMed ID: 34901920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.