These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7732377)

  • 1. Loss of atmosphere from Mars due to solar wind-induced sputtering.
    Kass DM; Yung YL
    Science; 1995 May; 268(5211):697-9. PubMed ID: 7732377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The case for a wet, warm climate on early Mars.
    Pollack JB; Kasting JF; Richardson SM; Poliakoff K
    Icarus; 1987; 71():203-24. PubMed ID: 11539035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.
    Terada N; Kulikov YN; Lammer H; Lichtenegger HI; Tanaka T; Shinagawa H; Zhang T
    Astrobiology; 2009; 9(1):55-70. PubMed ID: 19216683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duration of liquid water habitats on early Mars.
    McKay CP; Davis WL
    Icarus; 1991; 90():214-21. PubMed ID: 11538097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 condensation and the climate of early Mars.
    Kasting JF
    Icarus; 1991; 94():1-13. PubMed ID: 11538088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for the evolution of CO2 on Mars.
    Haberle RM; Tyler D; McKay CP; Davis WL
    Icarus; 1994 May; 109(1):102-20. PubMed ID: 11539135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical simulation of climate changes during the obliquity cycle on Mars.
    François LM; Walker JC; Kuhn WR
    J Geophys Res; 1990 Aug; 95(B9):14761-78. PubMed ID: 11538477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A slightly more massive young Sun as an explanation for warm temperatures on early Mars.
    Whitmire DP; Doyle LR; Reynolds RT; Matese JJ
    J Geophys Res; 1995 Mar; 100(E3):5457-64. PubMed ID: 11539571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mars environment and magnetic orbiter scientific and measurement objectives.
    Leblanc F; Langlais B; Fouchet T; Barabash S; Breuer D; Chassefière E; Coates A; Dehant V; Forget F; Lammer H; Lewis S; Lopez-Valverde M; Mandea M; Menvielle M; Pais A; Paetzold M; Read P; Sotin C; Tarits P; Vennerstrom S
    Astrobiology; 2009; 9(1):71-89. PubMed ID: 19317625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The state and future of Mars polar science and exploration.
    Clifford SM; Crisp D; Fisher DA; Herkenhoff KE; Smrekar SE; Thomas PC; Wynn-Williams DD; Zurek RW; Barnes JR; Bills BG; Blake EW; Calvin WM; Cameron JM; Carr MH; Christensen PR; Clark BC; Clow GD; Cutts JA; Dahl-Jensen D; Durham WB; Fanale FP; Farmer JD; Forget F; Gotto-Azuma K; Zwally HJ
    Icarus; 2000 Apr; 144(2):210-42. PubMed ID: 11543391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First measurement of helium on Mars: implications for the problem of radiogenic gases on the terrestrial planets.
    Krasnopolsky VA; Bowyer S; Chakrabarti S; Gladstone GR; McDonald JS
    Icarus; 1994 Jun; 109(2):337-51. PubMed ID: 11539139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How climate evolved on the terrestrial planets.
    Kasting JF; Toon OB; Pollack JB
    Sci Am; 1988 Feb; 256(2):90-7. PubMed ID: 11538470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water in SNC meteorites: evidence for a martian hydrosphere.
    Karlsson HR; Clayton RN; Gibson EK; Mayeda TK
    Science; 1992 Mar; 255():1409-11. PubMed ID: 11537889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HDO in the Martian atmosphere: implications for the abundance of crustal water.
    Yung YL; Wen JS; Pinto JP; Allen M; Pierce KK; Paulson S
    Icarus; 1988; 76():146-59. PubMed ID: 11538666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The early Mars climate question heats up.
    Kasting JF
    Science; 1997 Nov; 278(5341):1245. PubMed ID: 9411751
    [No Abstract]   [Full Text] [Related]  

  • 16. The implantation of life on Mars: feasibility and motivation.
    Haynes RH; McKay CP
    Adv Space Res; 1992; 12(4):133-40. PubMed ID: 11538133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. History of water on Mars: a biological perspective.
    McKay CP; Friedmann EI; Wharton RA; Davies WL; Friedman EI
    Adv Space Res; 1992; 12(4):231-8. PubMed ID: 11538143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water on Mars: isotopic constraints on exchange between the atmosphere and surface.
    Kass DM; Yung YL
    Geophys Res Lett; 1999 Dec; 26(24):3653-6. PubMed ID: 11543401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous geochemistry on early Mars.
    Schaefer MW
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4619-25. PubMed ID: 11539579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random walking. Mars as a new abode for microbial life.
    Jukes TH
    J Mol Evol; 1991; 32():355-7. PubMed ID: 11538261
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.