These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7732516)

  • 1. Study on the elbow movement produced by functional electrical stimulation (FES).
    Naito A; Handa Y; Handa T; Ichie M; Hoshimiya N; Shimizu Y
    Tohoku J Exp Med; 1994 Dec; 174(4):343-9. PubMed ID: 7732516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional anatomical studies of the elbow movements. I. Electromyographic (EMG) analysis.
    Naito A; Shimizu Y; Handa Y; Ichie M; Hoshimiya N
    Okajimas Folia Anat Jpn; 1991 Dec; 68(5):283-8. PubMed ID: 1806846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological studies of the biceps brachii activities in supination and flexion of the elbow joint.
    Naito A; Yajima M; Fukamachi H; Ushikoshi K; Handa Y; Hoshimiya N; Shimizu Y
    Tohoku J Exp Med; 1994 Jun; 173(2):259-67. PubMed ID: 7817389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyographic analysis of muscles across the elbow joint.
    Funk DA; An KN; Morrey BF; Daube JR
    J Orthop Res; 1987; 5(4):529-38. PubMed ID: 3681527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional electrical stimulation (FES) to the biceps brachii for controlling forearm supination in the paralyzed upper extremity.
    Naito A; Yajima M; Fukamachi H; Ushikoshi K; Handa Y; Hoshimiya N; Shimizu Y
    Tohoku J Exp Med; 1994 Jun; 173(2):269-73. PubMed ID: 7817390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isometric torque-angle relationship and movement-related activity of human elbow flexors: implications for the equilibrium-point hypothesis.
    Hasan Z; Enoka RM
    Exp Brain Res; 1985; 59(3):441-50. PubMed ID: 4029320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organizing principles for voluntary movement: extending single-joint rules.
    Almeida GL; Hong DA; Corcos D; Gottlieb GL
    J Neurophysiol; 1995 Oct; 74(4):1374-81. PubMed ID: 8989378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):499-508. PubMed ID: 8224076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction time of elbow flexion during passive movements.
    Nakamura R; Hosokawa T; Kitahara T
    Scand J Rehabil Med; 1982; 14(3):145-8. PubMed ID: 7134915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of functional electrical stimulation to the paralyzed extremities.
    Handa Y; Yagi R; Hoshimiya N
    Neurol Med Chir (Tokyo); 1998 Nov; 38(11):784-8. PubMed ID: 9919914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of thumb movements: EMG analysis of the thumb and its application to functional electrical stimulation for a paralyzed hand.
    Ichie M; Handa Y; Matsushita N; Naito A; Hoshimiya N
    Front Med Biol Eng; 1995; 6(4):291-307. PubMed ID: 7612504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing remaining voluntary muscle synergies to control FES elbow extension after spinal cord injury.
    Giuffrida JP; Crago PE
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4118-21. PubMed ID: 17271207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocal EMG control of elbow extension by FES.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2001 Dec; 9(4):338-45. PubMed ID: 12018646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Dual Therapy with Botulinum Toxin A Injection and Electromyography-controlled Functional Electrical Stimulation on Active Function in the Spastic Paretic Hand.
    Tsuchiya M; Morita A; Hara Y
    J Nippon Med Sch; 2016; 83(1):15-23. PubMed ID: 26960584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMG activities of the biceps brachii at rapid elbow flexion during passive movements.
    Sato K; Nakamura R; Nagasaki H
    Tohoku J Exp Med; 1983 Feb; 139(2):219-20. PubMed ID: 6836568
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of warning signal on reaction time and EMG activity of the biceps brachii muscle in elbow flexion and forearm supination.
    Mojica JA; Yamada Y; Nakamura R
    Tohoku J Exp Med; 1988 Apr; 154(4):375-80. PubMed ID: 3188002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of experimental and predicted muscle activation patterns in ballistic elbow joint movements.
    Gonzalez RV; Andritsos MJ; Barr RE; Abraham LD
    Biomed Sci Instrum; 1993; 29():9-16. PubMed ID: 8329641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.