BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 7733327)

  • 1. Effect of vasa recta flow on concentrating ability of models of renal inner medulla.
    Stephenson JL; Wang H; Tewarson RP
    Am J Physiol; 1995 Apr; 268(4 Pt 2):F698-709. PubMed ID: 7733327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of central core and radially separated models of renal inner medulla.
    Jen JF; Wang H; Tewarson RP; Stephenson JL
    Am J Physiol; 1995 Apr; 268(4 Pt 2):F693-7. PubMed ID: 7733326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inner medullary lactate production and accumulation: a vasa recta model.
    Thomas SR
    Am J Physiol Renal Physiol; 2000 Sep; 279(3):F468-81. PubMed ID: 10966926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cycles and separations in a model of the renal medulla.
    Thomas SR
    Am J Physiol; 1998 Nov; 275(5):F671-90. PubMed ID: 9815126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1367-81. PubMed ID: 15914775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal medullary concentrating process: an integrative hypothesis.
    Bonventre JV; Lechene C
    Am J Physiol; 1980 Dec; 239(6):F578-88. PubMed ID: 7446733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney.
    Layton AT
    Bull Math Biol; 2007 Apr; 69(3):887-929. PubMed ID: 17265123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional implications of the three-dimensional architecture of the rat renal inner medulla.
    Layton AT; Pannabecker TL; Dantzler WH; Layton HE
    Am J Physiol Renal Physiol; 2010 Apr; 298(4):F973-87. PubMed ID: 20053796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outer medullary anatomy and the urine concentrating mechanism.
    Wang X; Thomas SR; Wexler AS
    Am J Physiol; 1998 Feb; 274(2):F413-24. PubMed ID: 9486237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F372-84. PubMed ID: 21068088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The renal concentrating mechanism: fundamental theoretical concepts.
    Stephenson JL
    Fed Proc; 1983 May; 42(8):2386-91. PubMed ID: 6840288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1346-66. PubMed ID: 15914776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers.
    Layton AT; Pannabecker TL; Dantzler WH; Layton HE
    Am J Physiol Renal Physiol; 2010 Apr; 298(4):F962-72. PubMed ID: 20042460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inner medullary external osmotic driving force in a 3-D model of the renal concentrating mechanism.
    Thomas SR; Wexler AS
    Am J Physiol; 1995 Aug; 269(2 Pt 2):F159-71. PubMed ID: 7653590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
    Issaian T; Urity VB; Dantzler WH; Pannabecker TL
    Am J Physiol Regul Integr Comp Physiol; 2012 Oct; 303(7):R748-56. PubMed ID: 22914749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentrating engines and the kidney. III. Canonical mass balance equation for multinephron models of the renal medulla.
    Stephenson JL
    Biophys J; 1976 Nov; 16(11):1273-86. PubMed ID: 974220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convective uphill transport of NaCl from ascending thin limb of loop of Henle.
    Stephenson JL; Jen JF; Wang H; Tewarson RP
    Am J Physiol; 1995 Apr; 268(4 Pt 2):F680-92. PubMed ID: 7733325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.
    Chen J; Layton AT; Edwards A
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F517-36. PubMed ID: 19403646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F356-71. PubMed ID: 21068086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydraulic and oncotic pressure measurements in inner medulla of mammalian kidney.
    Sanjana VM; Johnston PA; Deen WM; Robertson CR; Brenner BM; Jamison RL
    Am J Physiol; 1975 Jun; 228(6):1921-6. PubMed ID: 1155623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.