These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 773375)

  • 21. Modification of the allosteric activator site of Escherichia coli ADP-glucose synthetase by trinitrobenzenesulfonate.
    Carlson CA; Preiss J
    Biochemistry; 1981 Dec; 20(26):7519-28. PubMed ID: 6275883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of the glucosyl donor: ADPglucose pyrophosphorylase.
    Adv Food Nutr Res; 1998; 41():43-74. PubMed ID: 9699262
    [No Abstract]   [Full Text] [Related]  

  • 23. Regulation of bacterial glycogen synthesis.
    Preiss J; Yung SG; Baecker PA
    Mol Cell Biochem; 1983; 57(1):61-80. PubMed ID: 6316123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification of hydroxymethylbilane synthase (porphobilinogen deaminase) by pyridoxal 5'-phosphate. Demonstration of an essential lysine residue.
    Hart GJ; Leeper FJ; Battersby AR
    Biochem J; 1984 Aug; 222(1):93-102. PubMed ID: 6433896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Allosteric sites of the large subunit of the spinach leaf ADPglucose pyrophosphorylase.
    Ball K; Preiss J
    J Biol Chem; 1994 Oct; 269(40):24706-11. PubMed ID: 7929144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction of pyridoxal 5'-phosphate with Escherichia coli CoA transferase: evidence for an essential lysine residue.
    Frerman FE; Andreone P; Mielke D
    Arch Biochem Biophys; 1977 Jun; 181(2):508-15. PubMed ID: 332079
    [No Abstract]   [Full Text] [Related]  

  • 27. Site-directed mutagenesis of a regulatory site of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 336 in allosteric behavior.
    Meyer CR; Bork JA; Nadler S; Yirsa J; Preiss J
    Arch Biochem Biophys; 1998 May; 353(1):152-9. PubMed ID: 9578610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosynthesis of bacterial glycogen. Activator-induced oligomerization of a mutant Escherichia coli ADP-glucose synthase.
    Carlson CA; Parsons TF; Preiss J
    J Biol Chem; 1976 Dec; 251(24):7886-92. PubMed ID: 794067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Essential lysine residue in glutathione reductase: chemical modification by pyridoxal 5'-phosphate.
    Pandey A; Katiyar SS
    Biochem Mol Biol Int; 1995 Jun; 36(2):347-54. PubMed ID: 7663438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of transgenic potato (Solanum tuberosum) tubers with increased ADPglucose pyrophosphorylase.
    Sweetlove LJ; Burrell MM; ap Rees T
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):487-92. PubMed ID: 8973557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutagenesis of an amino acid residue in the activator-binding site of cyanobacterial ADP-glucose pyrophosphorylase causes alteration in activator specificity.
    Charng YY; Sheng J; Preiss J
    Arch Biochem Biophys; 1995 Apr; 318(2):476-80. PubMed ID: 7733679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthesis of bacterial glycogen. The nature of the binding of substrates and effectors to ADP-glucose synthase.
    Haugen TH; Preiss J
    J Biol Chem; 1979 Jan; 254(1):127-36. PubMed ID: 363717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitory effect of pyridoxal 5'-phosphate on the DNA binding site of ATP-dependent deoxyribonuclease from Bacillus laterosporus.
    Fujiyoshi T; Nakayama J; Anai M
    J Biochem; 1981 Apr; 89(4):1137-42. PubMed ID: 6265433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrophosphate may be involved in regulation of bacterial glycogen synthesis.
    Preiss J; Greenberg E
    Biochem Biophys Res Commun; 1983 Sep; 115(3):820-6. PubMed ID: 6312996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study of binary complexes of Escherichia coli maltodextrin phosphorylase: alpha-D-glucose 1-methylenephosphonate as a probe of pyridoxal 5'-phosphate-substrate interactions.
    Becker S; Schnackerz KD; Schinzel R
    Biochim Biophys Acta; 1995 Apr; 1243(3):381-5. PubMed ID: 7727513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the biosynthesis of NAD in Escherichia coli. 3. Precursors of quinolinic acid in vitro.
    Chandler JL; Gholson RK
    Biochim Biophys Acta; 1972 Apr; 264(2):311-8. PubMed ID: 4337619
    [No Abstract]   [Full Text] [Related]  

  • 37. Nucleotide regulation of phosphoenolpyruvate carboxylase from Escherichia coli.
    Silverstein R
    Arch Biochem Biophys; 1976 Jun; 174(2):568-74. PubMed ID: 779661
    [No Abstract]   [Full Text] [Related]  

  • 38. Leucine dehydrogenase from Bacillus stearothermophilus: identification of active-site lysine by modification with pyridoxal phosphate.
    Matsuyama T; Soda K; Fukui T; Tanizawa K
    J Biochem; 1992 Aug; 112(2):258-65. PubMed ID: 1400267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Abortive enzyme-substrate ternary complexes formed by the fructose 1,6-diphosphate-activated pyruvate kinase from the hepatopancreas of Carcinus maenas.
    Giles IG; Poat PC; Munday KA
    Biochem Soc Trans; 1976; 4(3):481-4. PubMed ID: 1001704
    [No Abstract]   [Full Text] [Related]  

  • 40. Studies on mammalian ribonucleotide reductase inhibition by pyridoxal phosphate and the dialdehyde derivatives of adenosine, adenosine 5'-monophosphate, and adenosine 5'-triphosphate.
    Cory JG; Mansell MM
    Cancer Res; 1975 Feb; 35(2):390-6. PubMed ID: 1109803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.