These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7733870)

  • 1. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.
    Kukiełka E; Cederbaum AI
    Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):361-7. PubMed ID: 7733870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of microsomal production of reactive oxygen intermediates by rifamycin SV: effect of ferric complexes and comparisons between NADPH and NADH.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1992 Nov; 298(2):602-11. PubMed ID: 1329662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of the redox-cycling of a quinone (rifamycin S) and a quinonimine (rifabutin) antibiotic by rat liver microsomes.
    Rao DN; Cederbaum AI
    Free Radic Biol Med; 1997; 22(3):439-46. PubMed ID: 8981035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA strand cleavage as a sensitive assay for the production of hydroxyl radicals by microsomes: role of cytochrome P4502E1 in the increased activity after ethanol treatment.
    Kukielka E; Cederbaum AI
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):773-9. PubMed ID: 7945202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1989 Dec; 275(2):540-50. PubMed ID: 2556968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of cytochrome b5 in NADH-dependent microsomal reduction of ferric complexes, lipid peroxidation, and hydrogen peroxide generation.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1995 Dec; 324(2):282-92. PubMed ID: 8554320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsomal interactions between iron, paraquat, and menadione: effect on hydroxyl radical production and alcohol oxidation.
    Beloqui O; Cederbaum AI
    Arch Biochem Biophys; 1985 Oct; 242(1):187-96. PubMed ID: 2996429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferritin stimulation of hydroxyl radical production by rat liver nuclei.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1994 Jan; 308(1):70-7. PubMed ID: 8311476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of microsomal chemiluminescence by ferritin.
    Puntarulo S; Cederbaum AI
    Biochim Biophys Acta; 1993 May; 1157(1):1-8. PubMed ID: 8499475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase.
    Dicker E; Cederbaum AI
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals.
    Kukiełka E; Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between paraquat and ferric complexes in the microsomal generation of oxygen radicals.
    Puntarulo S; Cederbaum AI
    Biochem Pharmacol; 1989 Sep; 38(17):2911-8. PubMed ID: 2550014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH.
    Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1992 Mar; 293(2):274-80. PubMed ID: 1311163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of reactive oxygen intermediates by human liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Cederbaum AI
    Mol Pharmacol; 1994 Jan; 45(1):150-7. PubMed ID: 8302274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased production of hydroxyl radical by pericentral microsomes compared to periportal microsomes after pyrazole induction of cytochrome P4502E1.
    Kukiełka E; Cederbaum AI
    Biochem Biophys Res Commun; 1995 Oct; 215(2):698-705. PubMed ID: 7488011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.
    Kukiełka E; Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.