These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 7733892)
1. Analysis of carbohydrate transport across the envelope of isolated cauliflower-bud amyloplasts. Möhlmann T; Batz O; Maass U; Neuhaus HE Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):521-6. PubMed ID: 7733892 [TBL] [Abstract][Full Text] [Related]
2. ADP-glucose drives starch synthesis in isolated maize endosperm amyloplasts: characterization of starch synthesis and transport properties across the amyloplast envelope. Möhlmann T; Tjaden J; Henrichs G; Quick WP; Häusler R; Neuhaus HE Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):503-9. PubMed ID: 9182710 [TBL] [Abstract][Full Text] [Related]
3. Reconstitution of the hexose phosphate translocator from the envelope membranes of wheat endosperm amyloplasts. Tetlow IJ; Bowsher CG; Emes MJ Biochem J; 1996 Nov; 319 ( Pt 3)(Pt 3):717-23. PubMed ID: 8920972 [TBL] [Abstract][Full Text] [Related]
4. Identification of the putative hexose-phosphate translocator of amyloplasts from cauliflower buds. Batz O; Scheibe R; Neuhaus HE Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):15-7. PubMed ID: 8363565 [TBL] [Abstract][Full Text] [Related]
5. Unidirectional transport of orthophosphate across the envelope of isolated cauliflower-bud amyloplasts. Neuhaus H-; Maaß U Planta; 1996 Apr; 198(4):542-548. PubMed ID: 28321664 [TBL] [Abstract][Full Text] [Related]
6. Glucose- and ADPGlc-dependent starch synthesis in isolated cauliflower-bud amyloplasts. Analysis of the interaction of various potential precursors. Batz O; Maass U; Henrichs G; Scheibe R; Neuhaus HE Biochim Biophys Acta; 1994 Jul; 1200(2):148-54. PubMed ID: 8031834 [TBL] [Abstract][Full Text] [Related]
7. Evidence for two types of phosphate translocators in sweet-pepper (Capsicum annum L.) fruit chromoplasts. Quick WP; Neuhaus HE Biochem J; 1996 Nov; 320 ( Pt 1)(Pt 1):7-10. PubMed ID: 8947460 [TBL] [Abstract][Full Text] [Related]
8. Studies of the Enzymic Capacities and Transport Properties of Pea Root Plastids. Borchert S; Harborth J; Schunemann D; Hoferichter P; Heldt HW Plant Physiol; 1993 Jan; 101(1):303-312. PubMed ID: 12231686 [TBL] [Abstract][Full Text] [Related]
9. Reconstitution of hexose phosphate transport in membranes isolated from developing wheat endosperm amyloplasts. Tetlow IJ; Bowsher CG; Emes MJ Biochem Soc Trans; 1995 Nov; 23(4):570S. PubMed ID: 8654755 [No Abstract] [Full Text] [Related]
10. Characterization of Glucose-6-Phosphate Incorporation into Starch by Isolated Intact Cauliflower-Bud Plastids. Neuhaus HE; Henrichs G; Scheibe R Plant Physiol; 1993 Feb; 101(2):573-578. PubMed ID: 12231712 [TBL] [Abstract][Full Text] [Related]
11. Expression of Arabidopsis plastidial phosphoglucomutase in tobacco stimulates photosynthetic carbon flow into starch synthesis. Uematsu K; Suzuki N; Iwamae T; Inui M; Yukawa H J Plant Physiol; 2012 Oct; 169(15):1454-62. PubMed ID: 22705254 [TBL] [Abstract][Full Text] [Related]
12. Comparison of glycerolipid biosynthesis in non-green plastids from sycamore (Acer pseudoplatanus) cells and cauliflower (Brassica oleracea) buds. Alban C; Joyard J; Douce R Biochem J; 1989 May; 259(3):775-83. PubMed ID: 2730586 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of the glucose-6-phosphate transporter in oilseed rape (Brassica napus L.) plastids by acyl-CoA thioesters reduces fatty acid synthesis. Fox SR; Hill LM; Rawsthorne S; Hills MJ Biochem J; 2000 Dec; 352 Pt 2(Pt 2):525-32. PubMed ID: 11085947 [TBL] [Abstract][Full Text] [Related]
14. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Kunz HH; Häusler RE; Fettke J; Herbst K; Niewiadomski P; Gierth M; Bell K; Steup M; Flügge UI; Schneider A Plant Biol (Stuttg); 2010 Sep; 12 Suppl 1():115-28. PubMed ID: 20712627 [TBL] [Abstract][Full Text] [Related]
15. Purification of highly intact plastids from various heterotrophic plant tissues: analysis of enzymic equipment and precursor dependency for starch biosynthesis. Neuhaus HE; Batz O; Thom E; Scheibe R Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):395-401. PubMed ID: 8257430 [TBL] [Abstract][Full Text] [Related]
16. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). Schwöppe C; Winkler HH; Neuhaus HE J Bacteriol; 2002 Apr; 184(8):2108-15. PubMed ID: 11914341 [TBL] [Abstract][Full Text] [Related]
17. Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Häusler RE; Baur B; Scharte J; Teichmann T; Eicks M; Fischer KL; Flügge UI; Schubert S; Weber A; Fischer K Plant J; 2000 Nov; 24(3):285-96. PubMed ID: 11069702 [TBL] [Abstract][Full Text] [Related]
18. Inhibition by long-chain acyl-CoAs of glucose 6-phosphate metabolism in plastids isolated from developing embryos of oilseed rape (Brassica napus L.). Johnson PE; Fox SR; Hills MJ; Rawsthorne S Biochem J; 2000 May; 348 Pt 1(Pt 1):145-50. PubMed ID: 10794725 [TBL] [Abstract][Full Text] [Related]
19. The effect of Glc6P uptake and its subsequent oxidation within pea root plastids on nitrite reduction and glutamate synthesis. Bowsher CG; Lacey AE; Hanke GT; Clarkson DT; Saker LR; Stulen I; Emes MJ J Exp Bot; 2007; 58(5):1109-18. PubMed ID: 17220512 [TBL] [Abstract][Full Text] [Related]
20. Identification of membrane-bound phosphoglucomutase and glucose-6 phosphatase by 32P-labeling of rat liver microsomal membrane proteins with 32P-glucose-6 phosphate. Mithieux G; Ajzannay A; Minassian C J Biochem; 1995 Apr; 117(4):908-14. PubMed ID: 7592558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]