These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7734070)

  • 21. Behavioral and physiological consequences of unilateral ablation of the nucleus isthmi in the leopard frog.
    Gruberg ER; Wallace MT; Caine HS; Mote MI
    Brain Behav Evol; 1991; 37(2):92-103. PubMed ID: 2054588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulus-evoked slow potential shifts and changes in [K+]0 of the frog optic tectum.
    Roitbak AI; Ocherashvili EV; Laming PR; Roitbak TA
    J Comp Physiol A; 1992 Mar; 170(3):327-33. PubMed ID: 1593502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Apomorphine-induced suppression of prey oriented turning in toads is correlated with activity changes in pretectum and tectum: [14C]2DG studies and single cell recordings.
    Glagow M; Ewert JP
    Neurosci Lett; 1996 Dec; 220(3):215-8. PubMed ID: 8994231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses of the optic tectum to telencephalic stimulation in catfish.
    Lee LT; Bullock TH
    Brain Behav Evol; 1990; 35(6):313-24. PubMed ID: 2245312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complementary and lateralized forms of processing in Bufo marinus for novel and familiar prey.
    Robins A; Rogers LJ
    Neurobiol Learn Mem; 2006 Sep; 86(2):214-27. PubMed ID: 16631392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Autonomic adjustments during avoidance and orienting responses induced by electrical stimulation of the central nervous system in toads (Bufo paracnemis).
    Cordeiro de Sousa MB; Hoffmann A
    J Comp Physiol B; 1985; 155(3):381-6. PubMed ID: 3837021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuronal correlates of edge preference in prey-catching behavior of toads Bufo bufo.
    Tsai H; Burghagen H; Schürg-Pfeiffer E; Ewert JP
    Naturwissenschaften; 1983 Jun; 70(6):310-1. PubMed ID: 6410287
    [No Abstract]   [Full Text] [Related]  

  • 28. Local motion processing in the optic tectum of the Japanese toad, Bufo japonicus.
    Satou M; Shiraishi A
    J Comp Physiol A; 1991 Nov; 169(5):569-89. PubMed ID: 1795232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual unit, EEG and sustained potential shift responses in the brains of toads (Bufo bufo) during alert and defensive behavior.
    Laming PR; Borchers HW; Ewert JP
    Physiol Behav; 1984 Mar; 32(3):463-8. PubMed ID: 6431460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum.
    Gahtan E; Tanger P; Baier H
    J Neurosci; 2005 Oct; 25(40):9294-303. PubMed ID: 16207889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excitatory and inhibitory transmission from the optic tectum to nucleus isthmi and its vicinity in amphibians.
    Wu GY; Wang SR
    Brain Behav Evol; 1995; 46(1):43-9. PubMed ID: 7552220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rearrangements of the retinotectal projection in Rana pipiens after unilateral caudal half-tectum ablation.
    Udin SB
    J Comp Neurol; 1977 Jun; 173(3):561-82. PubMed ID: 300744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural mechanisms of visual selective attention.
    Mangun GR
    Psychophysiology; 1995 Jan; 32(1):4-18. PubMed ID: 7878167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Receptive field properties of single cells in the pigeon's optic tectum during cooling of the 'visual wulst'.
    Leresche N; Hardy O; Jassik-Gerschenfeld D
    Brain Res; 1983 May; 267(2):225-36. PubMed ID: 6307466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. P300 evoked by an auditory and a visual paradigm and a semantic task.
    Dierks T; Maurer K
    Psychiatry Res; 1989 Sep; 29(3):439-41. PubMed ID: 2608814
    [No Abstract]   [Full Text] [Related]  

  • 36. Stimulus-specific long-term habituation of visually guided orienting behavior toward prey in toads: a 14C-2DG study.
    Finkenstädt T; Ewert JP
    J Comp Physiol A; 1988 May; 163(1):1-11. PubMed ID: 3133468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal dynamics of lateralized ERP components elicited during endogenous attentional shifts to relevant tactile events.
    van Velzen J; Forster B; Eimer M
    Psychophysiology; 2002 Nov; 39(6):874-8. PubMed ID: 12462516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ERP study on visual spatial priming with peripheral onsets.
    Eimer M
    Psychophysiology; 1994 Mar; 31(2):154-63. PubMed ID: 8153251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuronal organization underlying visually elicited prey orienting in the frog--III. Evidence for the existence of an uncrossed descending tectofugal pathway.
    Kostyk SK; Grobstein P
    Neuroscience; 1987 Apr; 21(1):83-96. PubMed ID: 3496554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The contribution of ultraviolet and short-wavelength sensitive cone mechanisms to color vision in rainbow trout.
    Coughlin DJ; Hawryshyn CW
    Brain Behav Evol; 1994; 43(4-5):219-32. PubMed ID: 8038985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.