These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 7734152)

  • 1. Binding of malate dehydrogenase and NADH channelling to complex I.
    Ovádi J; Huang Y; Spivey HO
    J Mol Recognit; 1994 Dec; 7(4):265-72. PubMed ID: 7734152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria.
    Kotlyar AB; Maklashina E; Cecchini G
    Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct transfer of NADH from malate dehydrogenase to complex I in Escherichia coli.
    Amarneh B; Vik SB
    Cell Biochem Biophys; 2005; 42(3):251-61. PubMed ID: 15976458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of cytosolic malate dehydrogenase from Trichomonas vaginalis.
    Drmota T; Tachezy J; Kulda J
    Folia Parasitol (Praha); 1997; 44(2):103-8. PubMed ID: 9269720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling NADH turnover in plant mitochondria.
    Hagedorn PH; Flyvbjerg H; Møller IM
    Physiol Plant; 2004 Mar; 120(3):370-385. PubMed ID: 15032834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate channeling of NADH and binding of dehydrogenases to complex I.
    Fukushima T; Decker RV; Anderson WM; Spivey HO
    J Biol Chem; 1989 Oct; 264(28):16483-8. PubMed ID: 2506178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex I binds several mitochondrial NAD-coupled dehydrogenases.
    Sumegi B; Srere PA
    J Biol Chem; 1984 Dec; 259(24):15040-5. PubMed ID: 6439716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malate dehydrogenases--structure and function.
    Minárik P; Tomásková N; Kollárová M; Antalík M
    Gen Physiol Biophys; 2002 Sep; 21(3):257-65. PubMed ID: 12537350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical background of atherosclerotic heart lesion in an experiment.
    Gilmiyarova FN; Sidorenkov IV; Radomskaya AM; Shpigel AS
    Cor Vasa; 1977; 19(4-5):355-62. PubMed ID: 202432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins.
    Tormo JR; González MC; Cortes D; Estornell E
    Arch Biochem Biophys; 1999 Sep; 369(1):119-26. PubMed ID: 10462447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles.
    van Belzen R; Kotlyar AB; Moon N; Dunham WR; Albracht SP
    Biochemistry; 1997 Jan; 36(4):886-93. PubMed ID: 9020788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malate dehydrogenase of the cytosol. A kinetic investigation of the reaction mechanism and a comparison with lactate dehydrogenase.
    Lodola A; Shore JD; Parker DM; Holbrook J
    Biochem J; 1978 Dec; 175(3):987-98. PubMed ID: 217361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of cytotoxicity of paraquat. I. NADH oxidation and paraquat radical formation via complex I.
    Fukushima T; Yamada K; Isobe A; Shiwaku K; Yamane Y
    Exp Toxicol Pathol; 1993 Oct; 45(5-6):345-9. PubMed ID: 8312721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the kinetics of cardiac cytosolic malate dehydrogenase and comparative analysis of cytosolic and mitochondrial isoforms.
    Dasika SK; Vinnakota KC; Beard DA
    Biophys J; 2015 Jan; 108(2):420-30. PubMed ID: 25606689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for three separate electron flow pathways through Complex I: an inhibitor study.
    Anderson WM; Trgovcich-Zacok D
    Biochim Biophys Acta; 1995 Jun; 1230(3):186-93. PubMed ID: 7619835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Participation of the quinone acceptor in the transition of complex I from an inactive to active state].
    Maklashina EO; Vinogradov AD
    Biokhimiia; 1994 Nov; 59(11):1638-45. PubMed ID: 7873673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.