These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 773426)

  • 21. Presence of the hypermodified nucleotide N6-(delta 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA.
    Wilson RK; Roe BA
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):409-13. PubMed ID: 2643111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and aminoacylation of 3'-amino-3'-deoxy transfer RNA and its activity in ribosomal protein synthesis.
    Fraser TH; Rich A
    Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2671-5. PubMed ID: 4582194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The role of the 3'-CCA sequence in the interaction of tRNA(Phe) from E. coli and Thermus thermophilus with homologous phenylalanyl-tRNA-synthetases].
    Moor NA; Stepanov VG; Repkova MN; Ven'iaminova AG; Vratskikh LV; Iamkovoĭ VI; Motorin IuA; Lavrik OI
    Biokhimiia; 1994 Sep; 59(9):1299-303. PubMed ID: 7819409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenylalanyl-tRNA synthetase of Escherichia coli K 10. Multiple enzyme-aminoacyl-tRNA complexes as a consequence of substrate specificity.
    Güntner C; Holler E
    Biochemistry; 1979 May; 18(10):2028-38. PubMed ID: 373798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zinc(II)-dependent synthesis of diadenosine 5', 5"' -P(1) ,P(4) -tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases.
    Plateau P; Mayaux JF; Blanquet S
    Biochemistry; 1981 Aug; 20(16):4654-62. PubMed ID: 7028092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recognition of the 3' terminus of 2'-O-aminoacyl transfer ribonucleic acid by the acceptor site of ribosomal peptidyltransferase.
    Ringer D; Quiggle K; Chládek S
    Biochemistry; 1975 Feb; 14(3):514-20. PubMed ID: 1089429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Replacement of wybutine by hydrazines and its effect on the active conformation of yeast tRNAPhe.
    Schleich HG; Wintermeyer W; Zachau HG
    Nucleic Acids Res; 1978 May; 5(5):1701-13. PubMed ID: 351568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Covalent attachment of fluorescent probes to the X-base of Escherichia coli phenylalanine transfer ribonucleic acid.
    Schiller PW; Schechter AN
    Nucleic Acids Res; 1977 Jul; 4(7):2161-7. PubMed ID: 333386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of tRNA concentration on the rate of protein synthesis.
    Anderson WF
    Proc Natl Acad Sci U S A; 1969 Feb; 62(2):566-73. PubMed ID: 4894331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of the transfer RNAs coded by T2, T4, and T6 bacteriophages.
    Desai SM; Weiss SB
    J Biol Chem; 1977 Jul; 252(14):4935-41. PubMed ID: 326783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. L-phenylalanine:tRNA ligase of Escherichia coli K10. A rapid kinetic investigation of the catalytic reaction.
    Bartmann P; Hanke T; Holler E
    Biochemistry; 1975 Nov; 14(22):4777-86. PubMed ID: 1101957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA.
    Kirillov SV; Makhno VI; Semenkov YP
    Nucleic Acids Res; 1980 Jan; 8(1):183-96. PubMed ID: 6986612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA.
    Roy H; Ibba M
    Biochemistry; 2006 Aug; 45(30):9156-62. PubMed ID: 16866361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Chemical modification of phenylalanyl-tRNA synthetase and ribosomes of Escherichia coli with derivatives of tRNA-Phe carrying photoreactive groups on guanosine residues].
    Vlasov VV; Lavrik OI; Mamaev SV; Khodyreva SN; Chizhikov VE
    Mol Biol (Mosk); 1980; 14(3):531-8. PubMed ID: 6995828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical synthesis of 5-azacytidine nucleotides and preparation of tRNAs containing 5-azacytidine in its 3'-terminus.
    Zielinski WS; Sprinzl M
    Nucleic Acids Res; 1984 Jun; 12(12):5025-36. PubMed ID: 6204276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The effect of Mg2+ and Ca2+ ions on the aminoacylation of of transcripts of bacteriophage T5 and Escherichia coli tRNA(Phe) genes].
    Kholod NS; Pan'kova NV; Maĭorov SG; Krutilina AI; Shliapnikov MG; Ksenzenko VN; Kiselev LL
    Mol Biol (Mosk); 1996; 30(5):1066-75. PubMed ID: 8992294
    [No Abstract]   [Full Text] [Related]  

  • 38. Enzymatic replacement of the anticodon of yeast phenylalanine transfer ribonucleic acid.
    Bruce AG; Uhlenbeck OC
    Biochemistry; 1982 Mar; 21(5):855-61. PubMed ID: 7041969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro selection of small RNAs that bind to Escherichia coli phenylalanyl-tRNA synthetase.
    Peterson ET; Pan T; Coleman J; Uhlenbeck OC
    J Mol Biol; 1994 Sep; 242(3):186-92. PubMed ID: 8089840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic mechanism of phenylalanyl-tRNA synthetase of Escherichia coli K10. Conformational change and tRNAPhe phenylalanylation are concerted.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2467-76. PubMed ID: 7046787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.