BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 773427)

  • 1. Thermal unfolding of yeast glycine transfer RNA.
    Hilbers CW; Robillard GT; Shulamn RG; Blake RD; Webb PK; Fresco R; Riesner D
    Biochemistry; 1976 May; 15(9):1874-82. PubMed ID: 773427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of secondary and tertiary solution structure of yeast tRNA(Asp) by nuclear magnetic resonance. Assignment of G.U ring NH and hydrogen-bonded base pair proton resonances.
    Robillard GT; Hilbers CW; Reid BR; Gangloff J; Dirheimer G; Shulman RG
    Biochemistry; 1976 May; 15(9):1883-8. PubMed ID: 773428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance investigation of the base-pairing structure of Escherichia coli tRNATyr monomer and dimer conformations.
    Rordorf BF; Kearns DR
    Biochemistry; 1976 Jul; 15(15):3320-30. PubMed ID: 782517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the removal of the Y base on the conformation of yeast tRNA.
    Kearns DR; Wong KL; Wong YP
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3843-6. PubMed ID: 4590172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution phosphorus nuclear magnetic resonance spectra of yeast phenylalanine transfer ribonucleic acid. Melting curves and relaxation effects.
    Gorenstein DG; Luxon BA
    Biochemistry; 1979 Aug; 18(17):3796-804. PubMed ID: 383146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative calorimetric study on tRNA unfolding.
    Schott FJ; Grubert M; Wangler W; Ackermann T
    Biophys Chem; 1981 Sep; 14(1):25-30. PubMed ID: 7032616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves.
    Römer R; Hach R
    Eur J Biochem; 1975 Jun; 55(1):271-84. PubMed ID: 1100382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of conformational changes in tRNA Phe (yeast) as studied by the fluorescence of the Y-base and of formycin substituted for the 3'-terminal adenine.
    Coutts SM; Riesner D; Römer R; Rabl CR; Maass G
    Biophys Chem; 1975 Oct; 3(4):275-89. PubMed ID: 1103985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nuclear magnetic resonance study of secondary and tertiary structure in yeast tRNAPhe.
    Robillard GT; Tarr CE; Vosman F; Reid BR
    Biochemistry; 1977 Nov; 16(24):5261-73. PubMed ID: 336084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA.
    Crothers DM; Cole PE; Hilbers CW; Shulman RG
    J Mol Biol; 1974 Jul; 87(1):63-88. PubMed ID: 4610153
    [No Abstract]   [Full Text] [Related]  

  • 11. High-resolution nuclear magnetic resonance investigations of the structure of tRNA in solution.
    Kearns DR
    Prog Nucleic Acid Res Mol Biol; 1976; 18():91-149. PubMed ID: 790475
    [No Abstract]   [Full Text] [Related]  

  • 12. Study of transfer ribonucleic acid unfolding by dynamic nuclear magnetic resonance.
    Johnston PD; Redfield AG
    Biochemistry; 1981 Jul; 20(14):3996-4006. PubMed ID: 7025889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs.
    Dao V; Guenther RH; Agris PF
    Biochemistry; 1992 Nov; 31(45):11012-9. PubMed ID: 1445839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting order of successively longer yeast phenylalanine-accepting transfer ribonucleic acid fragments with a common 5' end.
    Boyle JA; Kim SH; Cole PE
    Biochemistry; 1983 Feb; 22(4):741-5. PubMed ID: 6340726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial stages of the thermal unfolding of yeast phenylalanine transfer RNA as studied by chemical modification: the effect of magnesium.
    Rhodes D
    Eur J Biochem; 1977 Nov; 81(1):91-101. PubMed ID: 412674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spin label study of the thermal unfolding of secondary and tertiary structure in E. colic transfer RNAs.
    Caron M; Dugas H
    Nucleic Acids Res; 1976 Jan; 3(1):35-47. PubMed ID: 175354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical studies of denatured tRNA2Glu from Escherichia coli.
    Bina-Stein M; Crothers DM; Hilbers CW; Shulman RG
    Proc Natl Acad Sci U S A; 1976 Jul; 73(7):2216-20. PubMed ID: 781670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe.
    Johnston PD; Redfield AG
    Nucleic Acids Res; 1977 Oct; 4(10):3599-615. PubMed ID: 337239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton exchange rates in transfer RNA as a function of spermidine and magnesium.
    Tropp JS; Redfield AG
    Nucleic Acids Res; 1983 Apr; 11(7):2121-34. PubMed ID: 6340067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of the structural change induced in tRNA fMET (Escherichia coli) by acidic pH.
    Bina-Stein M; Crothers DM
    Biochemistry; 1975 Sep; 14(19):4185-91. PubMed ID: 241372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.