These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 773453)
1. Influence of cell concentration, temperature, and press performance on flow characteristics and disintegration in the freeze-pressing of Saccharomyces cerevisiae with the X-press. Magnusson KE; Edebo L Biotechnol Bioeng; 1976 Jun; 18(6):865-83. PubMed ID: 773453 [TBL] [Abstract][Full Text] [Related]
2. Large-scale disintegration of microorganisms by freeze-pressing. Magnusson KE; Edebo L Biotechnol Bioeng; 1976 Jul; 18(7):975-86. PubMed ID: 782582 [TBL] [Abstract][Full Text] [Related]
3. Influence of salts and gelatin on disintegration of Saccharomyces cerevisiae by freeze-pressing. Magnusson KE; Edebo L Biotechnol Bioeng; 1976 Apr; 18(4):449-63. PubMed ID: 773446 [TBL] [Abstract][Full Text] [Related]
4. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Nakamura T; Takagi H; Shima J Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409 [TBL] [Abstract][Full Text] [Related]
5. New separation methodologies for the distinction of the growth phases of Saccharomyces cerevisiae cell cycle. Lainioti GCh; Kapolos J; Koliadima A; Karaiskakis G J Chromatogr A; 2010 Mar; 1217(11):1813-20. PubMed ID: 20117786 [TBL] [Abstract][Full Text] [Related]
6. Effect of moisture content on the invertase activity of freeze-dried S. cerevisiae. Pitombo RN; Spring C; Passos RF; Tonato M; Vitolo M Cryobiology; 1994 Aug; 31(4):383-92. PubMed ID: 7924395 [TBL] [Abstract][Full Text] [Related]
7. High-pressure inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum at subzero temperatures. Perrier-Cornet JM; Tapin S; Gaeta S; Gervais P J Biotechnol; 2005 Feb; 115(4):405-12. PubMed ID: 15639102 [TBL] [Abstract][Full Text] [Related]
8. Modelling the freezing response of baker's yeast prestressed cells: a statistical approach. Kronberg MF; Nikel PI; Cerrutti P; Galvagno MA J Appl Microbiol; 2008 Mar; 104(3):716-27. PubMed ID: 17927744 [TBL] [Abstract][Full Text] [Related]
9. A simple method for bakers' yeast cell disruption using a three-phase fluidized bed equipped with an agitator. Charinpanitkul T; Soottitantawat A; Tanthapanichakoon W Bioresour Technol; 2008 Dec; 99(18):8935-9. PubMed ID: 18547803 [TBL] [Abstract][Full Text] [Related]
10. Achievement of rapid osmotic dehydration at specific temperatures could maintain high Saccharomyces cerevisiae viability. Laroche C; Gervais P Appl Microbiol Biotechnol; 2003 Feb; 60(6):743-7. PubMed ID: 12664156 [TBL] [Abstract][Full Text] [Related]
11. Effects of temperature on the yeast cell cycle analyzed by flow cytometry. Vanoni M; Vai M; Frascotti G Cytometry; 1984 Sep; 5(5):530-3. PubMed ID: 6386390 [TBL] [Abstract][Full Text] [Related]
12. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough. Panadero J; Randez-Gil F; Prieto JA J Agric Food Chem; 2005 Dec; 53(26):9966-70. PubMed ID: 16366681 [TBL] [Abstract][Full Text] [Related]
13. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing. Codón AC; Rincón AM; Moreno-Mateos MA; Delgado-Jarana J; Rey M; Limón C; Rosado IV; Cubero B; Peñate X; Castrejón F; Benítez T J Agric Food Chem; 2003 Jan; 51(2):483-91. PubMed ID: 12517114 [TBL] [Abstract][Full Text] [Related]
14. Validation of antifreeze properties of glutathione based on its thermodynamic characteristics and protection of baker's yeast during cryopreservation. Zhang C; Zhang H; Wang L; Yao H J Agric Food Chem; 2007 Jun; 55(12):4698-703. PubMed ID: 17508758 [TBL] [Abstract][Full Text] [Related]
15. Thermal and spectroscopic studies on sorption of nickel(II) ion on protonated baker's yeast. Padmavathy V; Vasudevan P; Dhingra SC Chemosphere; 2003 Sep; 52(10):1807-17. PubMed ID: 12871747 [TBL] [Abstract][Full Text] [Related]
16. Mathematical modeling of Saccharomyces cerevisiae inactivation under high-pressure carbon dioxide. Erkmen O Nahrung; 2003 Jun; 47(3):176-80. PubMed ID: 12866619 [TBL] [Abstract][Full Text] [Related]
17. Freeze tolerance of the yeast Torulaspora delbrueckii: cellular and biochemical basis. Alves-Araújo C; Almeida MJ; Sousa MJ; Leão C FEMS Microbiol Lett; 2004 Nov; 240(1):7-14. PubMed ID: 15500973 [TBL] [Abstract][Full Text] [Related]
18. Geographic variation of freeze-tolerance in the earthworm Dendrobaena octaedra. Rasmussen LM; Holmstrup M J Comp Physiol B; 2002 Dec; 172(8):691-8. PubMed ID: 12444468 [TBL] [Abstract][Full Text] [Related]
19. [Preparation of cell walls of group A Streptococcus. Methods of disintegration, isolation and control]. Blinnikova EI; Kolchin NM; Volov AA; Chistenkov NA; Savelyev EP; Petrov GI Prikl Biokhim Mikrobiol; 1975; 11(6):927-32. PubMed ID: 1208432 [TBL] [Abstract][Full Text] [Related]
20. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata. Worland MR; Wharton DA; Byars SG J Insect Physiol; 2004; 50(2-3):225-32. PubMed ID: 15019525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]