These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7734643)

  • 1. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress.
    Le Huec JC; Schaeverbeke T; Clement D; Faber J; Le Rebeller A
    Biomaterials; 1995 Jan; 16(2):113-8. PubMed ID: 7734643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure.
    Werner J; Linner-Krcmar B; Friess W; Greil P
    Biomaterials; 2002 Nov; 23(21):4285-94. PubMed ID: 12194531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Dec; 18(12):2319-29. PubMed ID: 17569009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate.
    Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H
    Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of sintering temperature on the porosity and strength of porous hydroxyapatite ceramics.
    Rusnah M; Andanastuti M; Idris B
    Med J Malaysia; 2004 May; 59 Suppl B():158-9. PubMed ID: 15468866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite-based porous aggregates: physico-chemical nature, structure, texture and architecture.
    Fabbri M; Celotti GC; Ravaglioli A
    Biomaterials; 1995 Feb; 16(3):225-8. PubMed ID: 7748999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis.
    Nishikawa M; Myoui A; Ohgushi H; Ikeuchi M; Tamai N; Yoshikawa H
    Cell Transplant; 2004; 13(4):367-76. PubMed ID: 15468678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Dec; 18(12):2251-6. PubMed ID: 17562138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and mechanical testing of porous calcium phosphate bioceramic granules.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Oct; 18(10):1931-7. PubMed ID: 17554596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.
    Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H
    J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular ceramic scaffolds for individual implants.
    Biggemann J; Pezoldt M; Stumpf M; Greil P; Fey T
    Acta Biomater; 2018 Oct; 80():390-400. PubMed ID: 30213769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on the surface strain distribution on the hydroxyapatite-implanted canine tibia: a preliminary report.
    Ito K; Ooi Y; Yano H; Takagi S
    Biomed Mater Eng; 1991; 1(3):167-71. PubMed ID: 1668798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development, characterization, and validation of porous carbonated hydroxyapatite bone cement.
    Tang PF; Li G; Wang JF; Zheng QJ; Wang Y
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):886-93. PubMed ID: 19353574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics.
    Zhang Y; Zhou K; Bao Y; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):340-6. PubMed ID: 25428079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transforming the sintered ostrich cancellous bone to multiphasic calcium phosphate ceramic].
    Yang YW; Mao TQ; Sun MY; Chen FL; Chen SJ; Yang C
    Shanghai Kou Qiang Yi Xue; 2003 Aug; 12(4):277-80. PubMed ID: 14966641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of 1-dimensional porous hydroxyapatite and evaluation of its osteoconductivity.
    Ryu HS; Kim SJ; Kim JH; Kim H; Hong KS; Chang BS; Lee DH; Lee JH; Lee CK; Chung SS
    J Mater Sci Mater Med; 2004 Mar; 15(3):267-73. PubMed ID: 15334999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.
    Shareef MY; Messer PF; van Noort R
    Biomaterials; 1993; 14(1):69-75. PubMed ID: 8381034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and strength of extruded porous HA ceramics.
    Rusnah M; Andanastuti M; Idris B
    Med J Malaysia; 2004 May; 59 Suppl B():83-4. PubMed ID: 15468830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.