These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7734644)

  • 1. Osteogenesis in muscle with composite graft of hydroxyapatite and autogenous calvarial periosteum: a preliminary report.
    Kurashina K; Kurita H; Takeuchi H; Hirano M; Klein CP; de Groot K
    Biomaterials; 1995 Jan; 16(2):119-23. PubMed ID: 7734644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological assessment of porous-implant hydroxyapatite combined with periosteal grafting in maxillary defects.
    Caria PH; Kawachi EY; Bertran CA; Camilli JA
    J Oral Maxillofac Surg; 2007 May; 65(5):847-54. PubMed ID: 17448831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone morphogenetic protein promotes vascularization and osteoinduction in preformed hydroxyapatite in the rabbit.
    Levine JP; Bradley J; Turk AE; Ricci JL; Benedict JJ; Steiner G; Longaker MT; McCarthy JG
    Ann Plast Surg; 1997 Aug; 39(2):158-68. PubMed ID: 9262769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calvarial reconstruction in baboons with porous hydroxyapatite.
    Ripamonti U
    J Craniofac Surg; 1992 Nov; 3(3):149-59. PubMed ID: 1338494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the periosteum in osteointegration of hydroxyapatite granules.
    Wiese KG; Merten HA
    Int J Oral Maxillofac Surg; 1993 Oct; 22(5):306-8. PubMed ID: 8245573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of isolation of periosteum and dura on the healing of rabbit calvarial inlay bone grafts.
    Hopper RA; Zhang JR; Fourasier VL; Morova-Protzner I; Protzner KF; Pang CY; Forrest CR
    Plast Reconstr Surg; 2001 Feb; 107(2):454-62. PubMed ID: 11214061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry of porous hydroxyapatite implants influences osteogenesis in baboons (Papio ursinus).
    Magan A; Ripamonti U
    J Craniofac Surg; 1996 Jan; 7(1):71-8. PubMed ID: 9086906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New bone and connective tissue ingrowth in a hydroxyapatite block repairing a rabbit skull defect.
    Lindholm TC; Lindholm TS
    Ann Chir Gynaecol Suppl; 1993; 207():109-15. PubMed ID: 8154824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of fibronectin on osteoinductive capability of fresh iliac bone marrow aspirate in posterolateral spinal fusion in rabbits.
    Koga A; Tokuhashi Y; Ohkawa A; Nishimura T; Takayama K; Ryu J
    Spine (Phila Pa 1976); 2008 May; 33(12):1318-23. PubMed ID: 18496343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of artificial implant bone].
    Kita S
    Hokkaido Igaku Zasshi; 2000 Jan; 75(1):15-24. PubMed ID: 10736757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental study of healing around hydroxylapatite implants installed with autogenous iliac bone grafts for jaw reconstruction.
    Shirota T; Ohno K; Michi K; Tachikawa T
    J Oral Maxillofac Surg; 1991 Dec; 49(12):1310-5. PubMed ID: 1659622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The induction of bone in osteogenic composites of bone matrix and porous hydroxyapatite replicas: an experimental study on the baboon (Papio ursinus).
    Ripamonti U
    J Oral Maxillofac Surg; 1991 Aug; 49(8):817-30. PubMed ID: 1649284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting.
    Tanaka K; Takemoto M; Fujibayashi S; Neo M; Shikinami Y; Nakamura T
    Spine (Phila Pa 1976); 2011 Mar; 36(6):441-7. PubMed ID: 21124263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implant-delivered Alendronate Causes a Dose-dependent Response on Net Bone Formation Around Porous Titanium Implants in Canines.
    Pura JA; Bobyn JD; Tanzer M
    Clin Orthop Relat Res; 2016 May; 474(5):1224-33. PubMed ID: 26831478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A comparative morphometric and histologic study of five bone substitute materials].
    Chen L; Klaes W; Assenmacher S
    Zhonghua Yi Xue Za Zhi; 1996 Jul; 76(7):527-30. PubMed ID: 9275505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous hydroxyapatite as a bone graft substitute in maxillary augmentation. An histometric study.
    Holmes R; Hagler H
    J Craniomaxillofac Surg; 1988 Jul; 16(5):199-205. PubMed ID: 2900254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal fusion induced by porous hydroxyapatite blocks (HA). Experimental comparative study with HA, demineralized bone matrix and autogenous bone marrow.
    Ragni P; Ala-Mononen P; Lindholm TS
    Ital J Orthop Traumatol; 1993; 19(1):133-44. PubMed ID: 8567252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic capacity of periosteal grafts. A qualitative and quantitative study of membranous and tubular bone periosteum in young rabbits.
    Uddströmer L; Ritsilä V
    Scand J Plast Reconstr Surg; 1978; 12(3):207-14. PubMed ID: 368970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologic properties of nano-hydroxyapatite: An in vivo study of calvarial defects, ectopic bone formation and bone implantation.
    Pang KM; Lee JK; Seo YK; Kim SM; Kim MJ; Lee JH
    Biomed Mater Eng; 2015; 25(1):25-38. PubMed ID: 25585978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of critical-size defects with autogenous periosteum-derived cells combined with bovine anorganic apatite/collagen: an experimental study in rat calvaria.
    Paulo Ade O; Castro-Silva II; Oliveira DF; Machado ME; Bonetti-Filho I; Granjeiro JM
    Braz Dent J; 2011; 22(4):322-8. PubMed ID: 21861033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.